Journal of Mathematical Chemistry

, Volume 42, Issue 3, pp 321–336 | Cite as

Computational Modelling of the Behaviour of Potentiometric Membrane Biosensors



This paper presents a mathematical model of a potentiometric biosensor based on a potentiometric electrode covered with an enzyme membrane. The model is based on the reaction–diffusion equations containing a non-linear term related to theMichaelis–Menten kinetics of the enzymatic reaction. Using computer simulation the influence of the thickness of the enzyme membrane on the biosensor response was investigated. The digital simulation was performed using the finite difference technique. Results of the numerical simulation were compared with known analytical solutions.


reaction–diffusion modelling biosensor potentiometry 

AMS subject classification

35K57 65M06 76R50 92C45 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turner A.P.F., Karube I. and Wilson G.S. (1987). Biosensors: Fundamentals and Applications. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Scheller F., and Schubert F. (1988). Biosensors, Vol. 7. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Pallás-Areny R. and Webster J.G. (2000). Sensors and Signal Conditioning, 2nd edn. J Wiley, New YorkGoogle Scholar
  4. 4.
    Chaubey A., and Malhotra B.D. (2002). Biosens. Bioelectron. 17:441CrossRefGoogle Scholar
  5. 5.
    Rogers K.R. (1995). Biosens. Bioelectron. 10:533CrossRefGoogle Scholar
  6. 6.
    Wollenberger U., Lisdat F., and Scheller F.W. (1997). Frontiers in Biosensorics 2, Practical Applications. Birkhauser Verlag, BaselGoogle Scholar
  7. 7.
    Eggenstein C., Borchardt M., Diekmann C., Grundig B., Dumschat C., Cammann K., Knoll M. and Spener F. (1999). Biosens. Bioelectron. 14:33CrossRefGoogle Scholar
  8. 8.
    Kulys J. (1981). Anal. Lett. 14:377Google Scholar
  9. 9.
    Schulmeister T. (1987). Anal. Chim. Acta. 201:305CrossRefGoogle Scholar
  10. 10.
    Bartlett P.N., and Pratt K.F.E. (1993). Biosens Bioelectron. 8:451CrossRefGoogle Scholar
  11. 11.
    Sorochinskii V.V., and Kurganov B.I. (1996). Biosens. Bioelectron. 11:225CrossRefGoogle Scholar
  12. 12.
    Crank J. (1975). The Mathematics of Diffusion, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  13. 13.
    Aris R. (1975). The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. The Theory of the Steady State. Clarendon Press, OxfordGoogle Scholar
  14. 14.
    Samarskii A.A. (2001). The Theory of Difference Schemes. Marcel Dekker, New York BaselGoogle Scholar
  15. 15.
    Britz D. (1988). Digital Simulation in Electrochemistry, 2nd edn. Springer-Verlag, BerlinGoogle Scholar
  16. 16.
    Wang J. (2000). Analytical Electrochemistry, 2nd edn. J Wiley, New YorkGoogle Scholar
  17. 17.
    Blaedel W.J., Kissel T.R., and Boguslaski R.C. (1972). Anal Chem. 44:2030CrossRefGoogle Scholar
  18. 18.
    Kulys J.J. (1981). Analytical Systems Based on Immobilized Enzymes. Mokslas, Vilnius (In Russian).Google Scholar
  19. 19.
    Baronas R., Ivanauskas F., and Kulys J. (2003). Nonlinear Anal. Model. Cont. 8(1):3Google Scholar
  20. 20.
    Pickup J., and D.R. Thévenot, in: Advances in Biosensors, Supplement 1, ed. A.P.F. Turner (JAI~Press, London, 1993), pp. 201–225.Google Scholar
  21. 21.
    Ruzicka J., and Hansen E.H. (1988). Flow Injection Analysis, 2nd edn. Wiley-Interscience, New YorkGoogle Scholar
  22. 22.
    Bartlett P.N., Birkin P.R., and E.Wallace N.K. (1997). J. Chem. Soc. Faraday Trans. 93:1951CrossRefGoogle Scholar
  23. 23.
    Baronas R., Ivanauskas F., and Kulys J. (2002). J. Math. Chem. 32:225CrossRefGoogle Scholar
  24. 24.
    Baronas R., Ivanauskas F., and Kulys J. (2003). Sensors 3:248CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Faculty of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  2. 2.Institute of Mathematics and InformaticsVilniusLithuania
  3. 3.Department of Chemistry and BioengineeringVilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations