Journal of Mathematical Chemistry

, Volume 41, Issue 3, pp 315–326 | Cite as

Full Non-rigid Group of Sponge and Pina

  • M. R. Darafsheh
  • Y. Farjami
  • A. R. Ashrafi
  • M. Hamadanian

The non-rigid molecule group theory (NRG) in which the dynamical symmetry operations are defined as physical operations is a new field in chemistry. Smeyers and Villa computed the r-NRG of the triple equivalent methyl rotation in pyramidal trimethylamine with inversion and proved that the r-NRG of this molecule is a group of order 648, containing a subgroup of order 324 without inversions (see J. Math. Chem. 28(4) (2000) 377–388). In this work, a computational method is described, by means of which it is possible to calculate the symmetry group of molecules. We study the full non-rigid group (f-NRG) of Sponge and Pina molecules with C 2 and C i point groups, respectively. It proved that these are groups of order 162 and 13122 with 54 and 3240 conjugacy classes, respectively. The character tables of these groups are also computed.


non-rigid group character table Sponge Pina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smeyers Y.G. (1992). Adv. Quantum Chem. 24: 1Google Scholar
  2. 2.
    Y.G. Smeyers, in: Structure and Dynamics of Non-Rigid Molecular Systems, ed. Y.G. Smeyers (Kluwer Academic, Dordrecht, 1995), p. 121.Google Scholar
  3. 3.
    Smeyers Y.G., Senent M.L., Botella V., Moule D.C. (1993). J. Chem. Phys. 98: 2754CrossRefGoogle Scholar
  4. 4.
    Van der Avoird (1993). J. Chem. Phys. 98: 5327CrossRefGoogle Scholar
  5. 5.
    Smeyers Y.G., Villa M., Senent M.L. (1998). J. Mol. Spect. 191: 232CrossRefGoogle Scholar
  6. 6.
    Vivier-Bunge A., Uct V.H., Smeyers Y.G. (1998) J. Chem. Phys. 109: 2279CrossRefGoogle Scholar
  7. 7.
    Longuet-Higgins H.C. (1963). Mol. Phys. 6: 445CrossRefGoogle Scholar
  8. 8.
    Bunker Ph.R. (1979). Molecular Symmetry in Spectroscopy. Academic Press, New YorkGoogle Scholar
  9. 9.
    Isaacs I.M. (1978). Character theory of finite groups. Academic Press, New yorkGoogle Scholar
  10. 10.
    James G., Liebeck M. (1993). Representations and Characters of Groups. Cambridge University Press, CambridgeGoogle Scholar
  11. 11.
    Lomont J.S. (1959). Applications of Finite Groups. Academic Press Inc., New YorkGoogle Scholar
  12. 12.
    Smeyers Y.G., Villa M. (2000). J. Math. Chem. 28(4): 377CrossRefGoogle Scholar
  13. 13.
    Stone A.J. (1964). J. Chem. Phys. 41: 1568CrossRefGoogle Scholar
  14. 14.
    Ashrafi A.R., Hamadanian M. (2003). Croat. Chem. Acta 76(4): 299Google Scholar
  15. 15.
    Ashrafi A.R., Hamadanian M. (2004). J. Appl. Math. & Comput. 14: 289CrossRefGoogle Scholar
  16. 16.
    Hamadanian M., Ashrafi A.R. (2003). Croat. Chem. Acta 76(4): 305Google Scholar
  17. 17.
    Moghani G.A., Ashrafi A.R., Hamadanian M. (2005). J. Zhejian Univ. SCI. 6(2): 222CrossRefGoogle Scholar
  18. 18.
    Ashrafi A.R. (2005). MATCH Commun. Math. Comput. Chem. 53: 161Google Scholar
  19. 19.
    Schönert M., Besche H.U., Breuer Th., Celler F., Eick B., Felsch V., Hulpke A., Mnich J., Nickel W., Pfeiffer G., Polis U., Theißen H., Niemeyer A. (1995). GAP, Groups, Algorithms and Programming. Lehrstuhl De für Mathematik, RWTH, AachenGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. R. Darafsheh
    • 1
  • Y. Farjami
    • 1
  • A. R. Ashrafi
    • 2
  • M. Hamadanian
    • 3
  1. 1.Department of Mathematics, Statistics and Computer Science, Faculty of ScienceUniversity of TehranTehranIran
  2. 2.Department of Mathematics, Faculty of ScienceUniversity of KashanKashanIran
  3. 3.Department of Chemistry, Faculty of ScienceUniversity of KashanKashanIran

Personalised recommendations