Journal of Mathematical Chemistry

, Volume 39, Issue 3–4, pp 495–510 | Cite as

Generation of Molecular Fields, Quantum Similarity Measures and Related Questions

  • Ramon Carbó-Dorca
  • Emili Besalú


A straightforward discussion on how to generate molecular fields is developed within the postulates of quantum mechanics. The theoretical formalism points towards the generalization and extension of the well-known molecular field forms, associated to density function and electrostatic molecular potential (EMP), including another category of fields associated to quantum molecular similarity measures. The results show that the new formalism can be easily applied to obtain an unlimited number of new information about molecular behavior.


quantum molecular fields quantum similarity measures density functions electrostatic molecular potential quantum similarity fields 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bultinck P., De Winter H., Langenaeker W., Tollenaere J.P. (2004). ed. Computational Medicinal Chemistry for Drug Discovery. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Manaut F., Sanz F., Jose J., Milesi M. (1991). J. Comput.-Aided Mol. Des. 5: 371CrossRefPubMedGoogle Scholar
  3. 3.
    Cramer R.D., Patterson D.E., Bunce J.D. (1988). J. Am. Chem. Soc. 110: 5959CrossRefGoogle Scholar
  4. 4.
    Good A.C., Richards W.G. (1993). J. Chem. Inf. Comput. Sci. 33: 112CrossRefGoogle Scholar
  5. 5.
    R. Carbó-Dorca, L. Amat, E. Besalú, X. Gironès and D. Robert, in: Mathematical and Computational Chemistry: Fundamentals of Molecuar Similarity. Quantum Molecular Similarity:Theory and applications to the evaluation of molecular properties, biological activity and toxicity (Kluwer Academic/Plenum Publishers, 2001) pp. 187–320.Google Scholar
  6. 6.
    Scrocco E., Tomasi J. (1973). Top. Curr. Chem. 42: 95Google Scholar
  7. 7.
    Scrocco E., Tomasi J. (1978). Adv. Quantum Chem. 11: 115CrossRefGoogle Scholar
  8. 8.
    P. Politzer, P. Lane and J.S. Murray, in: K.D. Sen (ed.), Reviews in Modern Quantum Chemistry: A Celebration of the Contributions of R. G. Parr, Vol. 1 (World Scientific, Singapore, 2002) pp. 63–84.Google Scholar
  9. 9.
    Bader R.F.W. (1990). Atoms in Molecules, a Quantum Theory. Clarendon Press, OxfordGoogle Scholar
  10. 10.
    Amat L., Carbó-Dorca R. (1997). J. Comput. Chem. 18: 2023CrossRefGoogle Scholar
  11. 11.
    Amat L., Carbó-Dorca R. (1999). J. Comput. Chem. 20: 911CrossRefGoogle Scholar
  12. 12.
    Carbó-Dorca R. (1998). J. Math. Chem. 23: 353CrossRefGoogle Scholar
  13. 13.
    Bultinck P., Carbo-Dorca R. (2004). J. Math. Chem. 36: 191CrossRefGoogle Scholar
  14. 14.
    Mezey P.G. (1999). Mol. Phys. 96: 169CrossRefGoogle Scholar
  15. 15.
    Carbó R., Besalú E. (1993). J. Math. Chem. 13: 331CrossRefGoogle Scholar
  16. 16.
    Carbó R., Besalú E. (1994). Comput. Chem. 18: 117CrossRefGoogle Scholar
  17. 17.
    Carbó R., Besalú E. (1995). J. Math. Chem. 18: 37CrossRefGoogle Scholar
  18. 18.
    R. Carbó and E. Besalú, in: M. Defranceschiy and Y. Ellinger (eds.), Strategies and Applications in Quantum Chemistry: From Astrophysics to Molecular Engineering (Kluwer Ac. Pub. Amsterdam, 1996) pp. 229–248.Google Scholar
  19. 19.
    R. Carbó-Dorca, Adv. Quantum Chem. (in press).Google Scholar
  20. 20.
    R. Carbó-Dorca, L. Amat, E. Besalú and M. Lobato, Adv. Molec. Simil. JAI Press Lond. 2 (1998) 1.Google Scholar
  21. 21.
    Carbó-Dorca R. (2005). J. Math. Chem. 38: 661Google Scholar
  22. 22.
    Carbó R., Calabuig B., Besalú E., Martínez A. (1992). Mol. Eng. 2: 43CrossRefGoogle Scholar
  23. 23.
    Carbo-Dorca R., Bultinck P. (2004). J. Math. Chem. 36: 201 and 231Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Inorganic and Physical ChemistryGhent UniversityGentBelgium
  2. 2.Institut de Química ComputacionalUniversitat de GironaGironaCatalonia Spain

Personalised recommendations