Journal of Mathematical Chemistry

, Volume 39, Issue 2, pp 259–266 | Cite as

Note on the Coulson integral formula



Let P be a polynomial of degree n, whose zeros λ1, λ2, ..., λ n are real-valued. The Coulson integral formula (first reported in 1940) is an expression for the sum of the positive–valued zeros of P, in terms of P. We show that the Coulson formula holds if and only if the condition λ12+...+λ n =0 is obeyed. We also show how the formula has to be modified, so that it be applicable in the case when λ12+...+λ n ≠ 0.


Coulson integral formula total π-electron energy HMO theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Coulson C.A., O’Leary B., Mallion R.B. (1978). Hückel Theory for Organic Chemists. Academic Press, LondonGoogle Scholar
  2. Yates K. (1978). Hückel Molecular Orbital Theory. Academic Press, New YorkGoogle Scholar
  3. Graovac A., Gutman I., Trinajstić N. (1977). Topological Approach to the Chemistry of Conjugated Molecules. Springer-Verlag, BerlinGoogle Scholar
  4. Dias J.R. (1993). Molecular Orbital Calculations Using Chemical Graph Theory. Springer-Verlag, BerlinGoogle Scholar
  5. Coulson C.A. (1940). Proc. Camb. Phil. Soc. 36: 201Google Scholar
  6. Coulson C.A., Longuet–Higgins H.C. (1947). Proc. Roy. Soc. Lond. A191: 39Google Scholar
  7. Coulson C.A., Longuet–Higgins H.C. (1947). Proc. Roy. Soc. Lond. A192: 16Google Scholar
  8. Coulson C.A., Longuet–Higgins H.C. (1948). Proc. Roy. Soc. Lond. A193: 447–456CrossRefGoogle Scholar
  9. Gutman I. (1977). J. Chem. Phys. 66: 1652CrossRefGoogle Scholar
  10. Gutman I. (1987). J. Math. Chem. 1: 123Google Scholar
  11. Gutman I. (1992). Theory Chim. Acta 83: 313CrossRefGoogle Scholar
  12. Gutman I., Vidović D., Hosoya H. (2002). Bull. Chem. Soc. Jpn. 75: 1723CrossRefGoogle Scholar
  13. Gutman I., Milun M., Trinajstić N. (1977). J. Am. Chem. Soc. 99: 1692CrossRefGoogle Scholar
  14. Mizoguchi N. (1988). J. Phys. Chem. 92: 2754CrossRefGoogle Scholar
  15. Hosoya H., Hosoi K., Gutman I. (1975). Theory Chim. Acta 38: 37CrossRefGoogle Scholar
  16. Gutman I., Trinajstić N. (1976). J. Chem. Phys. 64: 4921CrossRefGoogle Scholar
  17. Bosanac S., Gutman I. (1977). Z. Naturforsch. 32a: 10Google Scholar
  18. Gutman I., Polansky O.E. (1981). Theory Chim. Acta 60: 203Google Scholar
  19. Mizoguchi N. (1989). Chem. Phys. Lett. 158: 383CrossRefGoogle Scholar
  20. Yvan P. (1952). J. Chim. Phys. 49: 457Google Scholar
  21. Hosoya H., Hosoi K. (1976). J. Chem. Phys. 64: 1065CrossRefGoogle Scholar
  22. Gutman I., Yamaguchi T., Hosoya H. (1976). Bull. Chem. Soc. Jpn. 49: 1811CrossRefGoogle Scholar
  23. Hosoya H., Iwata S. (1999). Theory Chem. Acc. 102: 293Google Scholar
  24. Mizoguchi N. (1984). Chem. Phys. Lett. 106: 451CrossRefGoogle Scholar
  25. Mizoguchi N. (1987). Bull. Chem. Soc. Jpn. 60: 2005CrossRefGoogle Scholar
  26. Gutman I. (1977). Theor. Chim. Acta 45: 79CrossRefGoogle Scholar
  27. Zhang J., Zhou B. (2005). J. Math. Chem. 37: 423CrossRefGoogle Scholar
  28. Gutman I., Polansky O.E. (1986). Mathematical Concepts in Organic Chemistry. Springer-Verlag, BerlinGoogle Scholar
  29. Hosoya H. (1999). J. Mol. Struct. (Theochem) 461/462: 473CrossRefGoogle Scholar
  30. Hosoya H. (2003). Bull. Chem. Soc. Jpn. 76: 2233CrossRefGoogle Scholar
  31. Gutman I. (2005). Monatsh. Chem. 136: 1055CrossRefGoogle Scholar
  32. O’Leary B., Mallion R.B. (1989). J. Math. Chem. 3: 323CrossRefGoogle Scholar
  33. Conway J. (1978). Functions of One Complex Variable. Springer-Verlag, BerlinGoogle Scholar
  34. Churchill R., Brown J. (1984). Complex Variables and Applications. McGraw-Hill, New YorkGoogle Scholar
  35. Barenstein A., Gay R. (1991). Complex Variables. Springer-Verlag, New YorkGoogle Scholar
  36. Gutman I. (1979). Theory Chim. Acta 50: 287CrossRefGoogle Scholar
  37. Ilić P., Jurić A., Trinajstić N. (1980). Croat. Chem. Acta 53: 587Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of KragujevacKragujevacSerbia & Montenegro
  2. 2.Faculty of MathematicsUniversity of BelgradeBelgradeSerbia & Montenegro

Personalised recommendations