Advertisement

Journal of Mathematical Chemistry

, Volume 38, Issue 3, pp 389–397 | Cite as

The total π-electron energy as a problem of moments: application of the Backus–Gilbert method

  • Daniel A. Morales
Article

Abstract

The total π-electron energy problem can be formulated as a classical problem of moments. This observation allows us to apply general methodologies developed in the field of moment’s theory to solve the total π-electron energy problem. In the present article, we apply the Backus–Gilbert method to obtain analytical expressions for the total π-electron energy in terms of its spectral moments.

Keywords

total π-electron energy problem of moments chemical graph theory spectral moments Backus–Gilbert method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.J. Stieltjes Ann. Fac. Sci. Toulouse 8 (1894) J. 1–122, 9 (1895) A. 1–47. Reprinted in: Thomas Jan Stieltjes, Collected Papers , Vol II, ed. G. van Dijk (Springer-Verlag, Berlin, 1993)Google Scholar
  2. 2.
    Shohat J.A., Tamarkin J.D. (1963). The Problem of Moments. American Mathematical Society, Providence, Rhode IslandGoogle Scholar
  3. 3.
    Backus, G.E., Gilbert, F. 1968Geophys. J. Roy. Ast. Soc.16169Google Scholar
  4. 4.
    Backus, G.E., Gilbert, F. 1970Phil. Trans. Roy. Soc. London A266123Google Scholar
  5. 5.
    Parker, R.L. 1977Ann. Rev. Earth Planet. Sci.535CrossRefGoogle Scholar
  6. 6.
    Loredo, T.J., Epstein, R. 1989Astrophys. J.336896CrossRefGoogle Scholar
  7. 7.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. 1992Numerical Recipes in C2Cambridge University PressCambridgechapter 18Google Scholar
  8. 8.
    Groetsch, C.W. 1999Inverse ProblemsThe Mathematical Association of AmericaWashington, DCGoogle Scholar
  9. 9.
    Ang, D.D., Gorenflo, R., Le, V.K., Trong, D.D. 2002Moment Theory and Some Inverse Problems in Potential Theory and Heat Conduction, Lectures Notes in Mathematics No. 1792Springer-VerlagBerlinGoogle Scholar
  10. 10.
    Gutman, I., Polansky, O.E. 1986Mathematical Concepts in Organic ChemistrySpringer VerlagBerlinGoogle Scholar
  11. 11.
    Trinajstić, N. 1992Chemical Graph Theory2CRC PressBoca RatonGoogle Scholar
  12. 12.
    Gutman, I., Soldatović, T., Graovac, A., Vuković, S. 2001Chem. Phys. Lett.334168CrossRefGoogle Scholar
  13. 13.
    McClelland, B.J. 1971J. Chem. Phys.54640CrossRefGoogle Scholar
  14. 14.
    Markovic, S., Gutman, I. 1991J. Mol. Struct. (Theochem).23581CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Facultad de CienciasUniversidad de Los AndesMéridaVenezuela

Personalised recommendations