Journal of Mathematical Chemistry

, Volume 38, Issue 4, pp 495–501 | Cite as

Polynomial Forms of Typical Interatomic Potential Functions

  • Teik-Cheng Lim


The use of polynomial functionals for describing two-body interactions in computational chemistry softwares has been surveyed and found to be prevalent. In this paper, Binomial and Maclaurin series expansions are used for expressing typical interatomic potential functions – such as Lennard-Jones, Morse, Rydberg and Buckingham potential – in a generic polynomial function, with the coefficients presented in a tabular format. Theoretical plots of these potential functions and their corresponding polynomial forms show increasing correlation with the order of polynomial, thereby validating the obtained polynomial’s coefficients. Conversely, a polynomial functional obtained by curve-fitting of experimental data can be converted into Morse, Rydberg and Buckingham potentials by using the generated table.


Binomial series interatomic potentials Maclaurin series polynomial functionals 

AMS subject classification

26C99 30B10 41A10 70F05 81V55 92E99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nieminen, R.M., Puska, M.J., Manninen, M.J. 1990Many-Atom Interactions in SolidsSpringerBerlinSpringer Proceedings in Physics 48Google Scholar
  2. 2.
    Murrell, J.N., Carter, S., Farantos, S.C., Huxley, P., Varandas, A.J.C. 1984Molecular Potential Energy FunctionsWileyNew YorkGoogle Scholar
  3. 3.
    Erkoc, S. 1997Phys. Rep.27879CrossRefGoogle Scholar
  4. 4.
    Rappe, A.K., Casewit, C.J. 1997Molecular Mechanics across ChemistryUniversity Science BooksCaliforniaGoogle Scholar
  5. 5.
    Jensen, F. 1999Introduction to Computational ChemistryWileyWest SussexGoogle Scholar
  6. 6.
    Brenner, D.W. 2000Phys. Status Solidi B21723CrossRefGoogle Scholar
  7. 7.
    Lim, T.C. 2002J. Math. Chem.31421CrossRefMathSciNetGoogle Scholar
  8. 8.
    Lim, T.C. 2002J. Math. Chem.32249CrossRefMathSciNetGoogle Scholar
  9. 9.
    Lim, T.C. 2003J. Math. Chem.3329CrossRefMathSciNetGoogle Scholar
  10. 10.
    Lim, T.C. 2003J. Math. Chem.33279CrossRefMathSciNetGoogle Scholar
  11. 11.
    Lim, T.C. 2003J. Math. Chem.34221CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lim, T.C. 2004J. Math. Chem.36139CrossRefMathSciNetGoogle Scholar
  13. 13.
    Lim, T.C. 2004Z. Naturforsch. A59116Google Scholar
  14. 14.
    Lim, T.C. 2003Z. Naturforsch. A58615Google Scholar
  15. 15.
    Lim, T.C. 2004Czech. J. Phys.54553CrossRefGoogle Scholar
  16. 16.
    Lim, T.C. 2004Czech. J. Phys.54947CrossRefGoogle Scholar
  17. 17.
    Lim, T.C. 2004Chin. Phys. Lett.212167CrossRefGoogle Scholar
  18. 18.
    Lim, T.C. 2005Chin. J. Phys.4343Google Scholar
  19. 19.
    Lim, T.C. 2004Physica Scripta70347Google Scholar
  20. 20.
    Lim, T.C. 2005MATCH Commun. Math. Comput. Chem.5429MathSciNetGoogle Scholar
  21. 21.
    Lim, T.C. 2003MATCH Commun. Math. Comput. Chem.49155Google Scholar
  22. 22.
    Lim, T.C. 2004MATCH Commun. Math. Comput. Chem.50185MathSciNetGoogle Scholar
  23. 23.
    Lim, T.C. 2004J. Math. Chem.36147CrossRefMathSciNetGoogle Scholar
  24. 24.
    Engler, E.M., Andose, J.D., Schleyer, P.v.R. 1973J. Am. Chem. Soc.958005CrossRefGoogle Scholar
  25. 25.
    Allinger, N.L. 1977J. Am. Chem. Soc.998127CrossRefGoogle Scholar
  26. 26.
    Lifson, S., Hagler, A.T., Dauber, P. 1979J. Am. Chem. Soc.1015111CrossRefGoogle Scholar
  27. 27.
    Brooks, R., Bruccoleri, R.E., Olafson, B.D., States, D.L., Swaminathan, S., Karplus, M. 1983J. Comput. Chem4187CrossRefGoogle Scholar
  28. 28.
    W.F. van Gunsteren and H.J.C. Berendsen, GROMOS: Groningen Molecular Simulation Software, Technical Report, Laboratory of Physical Chemistry, University of Groningen (1988).Google Scholar
  29. 29.
    Clark, M., Cramer, R.D.,III, Opdenbosch, N. 1989J. Comput. Chem.10982CrossRefGoogle Scholar
  30. 30.
    Allinger, N.L., Yuh, Y.H., Lii, J.H. 1989J. Am. Chem. Soc.1118551CrossRefGoogle Scholar
  31. 31.
    Mayo, S.L., Olafson, B.D., Goddard, W.A.,III 1990J. Phys. Chem.948897CrossRefGoogle Scholar
  32. 32.
    Morley, S.D., Abraham, R.J., Haworth, I.S., Jackson, D.E., Saunders, M.R., Vinter, J.G. 1991J. Comput.-Aided Mol. Des.5475CrossRefPubMedGoogle Scholar
  33. 33.
    Allured, V.S., Kelly, C.M., Landis, C.R. 1991J. Am. Chem. Soc.1131CrossRefGoogle Scholar
  34. 34.
    Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A.,III, Skiff, W.M. 1992J. Am. Chem. Soc.11410024CrossRefGoogle Scholar
  35. 35.
    Hwang, M.J., Stockfisch, T.P., Hagler, A.T. 1994J. Am. Chem. Soc.1162515CrossRefGoogle Scholar
  36. 36.
    Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M.,Jr, Ferguson, G.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A. 1995J. Am. Chem. Soc.1175179CrossRefGoogle Scholar
  37. 37.
    Comba, P., Hambley, T.W. 1995Molecular Modeling of Inorganic Compounds1WeinheimVCHGoogle Scholar
  38. 38.
    Dillen, J.M.L. 1995J. Comput. Chem.16595CrossRefGoogle Scholar
  39. 39.
    Halgren, T.A. 1996J. Comput. Chem.17490CrossRefGoogle Scholar
  40. 40.
    Allinger, N.L., Chen, K., Lii, J.H. 1996J. Comput. Chem.17642CrossRefGoogle Scholar
  41. 41.
    Damm, W., Frontera, A., Tirado-Rives, J., Jorgensen, W.L. 1997J. Comput. Chem.181955CrossRefGoogle Scholar
  42. 42.
    Lennard-Jones, J.E. 1924Proc. Roy Soc. Lond A106463Google Scholar
  43. 43.
    Morse, P.M. 1929Phys. Rev.3457CrossRefGoogle Scholar
  44. 44.
    Rydberg, R. 1931Z. Phys.73376Google Scholar
  45. 45.
    Buckingham, R.A. 1938Proc. Roy. Soc. Lond A168264Google Scholar
  46. 46.
    Lim, T.C. 2004J. Math. Chem.36261CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Faculty of Engineering, Nanoscience and Nanotechnology InitiativeNational University of SingaporeRepublic of Singapore

Personalised recommendations