Journal of Mathematical Chemistry

, Volume 38, Issue 4, pp 467–487 | Cite as

Parametric Optimization of Digitally Controlled Nonlinear Reactor Dynamics using Zubov-like Functional Equations



The present work aims at the development of a systematic method to optimally choose the parameters of digitally controlled nonlinear reactor dynamics. In addition to traditional performance requirements for the controlled reactor dynamics such as stability, fast and smooth regulation, disturbance rejection, etc., optimality is requested with respect to a physically meaningful performance. The value of the performance index is analytically calculated via the solution of a Zubov-like functional equation and becomes explicitly parameterized by the digital controller parameters. A standard static optimization algorithm yields subsequently the optimal values of the above parameters. Within the proposed framework, stability region estimates are also provided through the solution of the above functional equation. Finally, a nonlinear chemical reactor example following Van de Vusse kinetics is used in order to illustrate the proposed parametric optimization method.


chemical reaction system dynamics nonlinear dynamics parametric optimization functional equations Lyapunov stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tóth, J., Rabitz, H., Tomlin, A.S. 1997SIAM J. Appl. Math.571531CrossRefGoogle Scholar
  2. 2.
    Gorban, A.N., Karlin, I.V. 2003Chem. Eng. Sci.584751CrossRefGoogle Scholar
  3. 3.
    Gorban, A.N., Karlin, I.V., Zinoyev, A.Y. 2004Phys. Rep.336197CrossRefGoogle Scholar
  4. 4.
    Roussel, M.R. 1997J. Math. Chem.21385CrossRefMathSciNetGoogle Scholar
  5. 5.
    Christofides, P.D. 2001Nonlinear and Robust Control of PDE systemsBirkhäuserBostonGoogle Scholar
  6. 6.
    Epstein, I.R., Pojman, J.A. 1998An Introduction to Nonlinear Chemical DynamicsOxford University PressNew YorkGoogle Scholar
  7. 7.
    Isidori, A. 1989Nonlinear Control Systems: An IntroductionSpringer VerlagNew YorkGoogle Scholar
  8. 8.
    Kazantzis, N. 2003J. Nonlin. Sci.13579CrossRefGoogle Scholar
  9. 9.
    Nijmeijer, H., Vander Schaft, A.J. 1990Nonlinear Dynamical Control SystemsSpringer VerlagBerlin, GermanyGoogle Scholar
  10. 10.
    Kalman, R.E., Bertram, J.E. 1960J. Basic Eng. Trans ASME82371Google Scholar
  11. 11.
    Bryson, A.E., Ho, Y.C. 1975Applied Optimal ControlTaylor and FrancisBristolGoogle Scholar
  12. 12.
    Floudas, C.A. 1999Deterministic Global OptimizationKluwerNew YorkGoogle Scholar
  13. 13.
    Elaydi, S.N. 1999An Introduction to Difference EquationsSpringer VerlagNew YorkGoogle Scholar
  14. 14.
    O’Shea, P.R. 1964IEEE Trans. Autom. Contr.962CrossRefGoogle Scholar
  15. 15.
    Kalogiratou, Z., Simos, T.E. 2003J. Comp. Appl. Math.15875CrossRefGoogle Scholar
  16. 16.
    Margolis, S.G., Vogt, W.G. 1963IEEE Trans. Autom. Contr.8104CrossRefGoogle Scholar
  17. 17.
    Kazantzis, N. 2001Phys. Lett. A292107CrossRefGoogle Scholar
  18. 18.
    Kazantzis, N., Kravaris, C. 2001Syst. Contr. Lett.4281CrossRefGoogle Scholar
  19. 19.
    Kazantzis, N. 2002J. Comp. Appl. Math.146301CrossRefGoogle Scholar
  20. 20.
    Freeman, R.A., Kokotovic, P.V. 1996Robust Nonlinear Control Design: State-Space and Lyapunov TechniquesBirkhäuserBostonGoogle Scholar
  21. 21.
    Wright, R.A., Kravaris, C. 1992AICHE J.3826MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Chemical EngineeringWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations