Journal of Mathematical Chemistry

, Volume 37, Issue 4, pp 365–376 | Cite as

On the modelling of solid state reactions.Synthesis of YAG

  • Feliksas Ivanauskas
  • Aivaras Kareiva
  • Bogdanas Lapcun


There is a model of yttrium aluminium garnet (YAG) synthesis presented in this article. The developed model is based on nonlinear reaction–diffusion partial differential equations. The solution was carried out numerically using finite difference techniques. We got dependability curves for diffusion and reaction rates and offered possible method to localize values of diffusion and reaction rate constants precisely enough.


yttrium aluminium garnet reaction–diffusion model finite difference schemes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Machan, J., Kurtz, R., Bess, M. 1987J. Opt. Soc. Am.20134Google Scholar
  2. [2]
    Ikesue, A., Yoshida, K., Kamata, K. 1996J. Am. Ceram. Soc.79507Google Scholar
  3. [3]
    Harlan, C.J., Kareiva, A., MacQueen, D.B., Cook, R., Barron, A.R. 1997Adv. Mater.968Google Scholar
  4. [4]
    Jun, D., Peizhen, D., Jun, X. 1999J. Cryst. Growth203163Google Scholar
  5. [5]
    Malinowski, M., Piramidowicz, R., Frukacz, Z., Chadeyron, G., Mahiou, R., Joubert, M.F. 1999Opt. Mater.12409Google Scholar
  6. [6]
    Vega-Duran, J.T., Barbosa-Garcia, O., Diaz-Torres, L.A., Meneses-Nava, M.A. 2000Appl. Phys. Lett.762032Google Scholar
  7. [7]
    Chokshi, A.H., Porter, J.R. 1986J. Am. Ceram. Soc.69C-37Google Scholar
  8. [8]
    Parthasarathy, T.A., Mah, T., Keller, K. 1991Ceram. Eng. Sci. Proc.121767Google Scholar
  9. [9]
    Corman, G.S. 1991Ceram. Eng. Sci. Proc.121745Google Scholar
  10. [10]
    Corman, G.S. 1993J. Mater. Sci. Lett.12379Google Scholar
  11. [11]
    King, B.H., Liu, Y., Laine, R., Halloran, J.W. 1993Ceram. Eng. Sci. Proc.14639Google Scholar
  12. [12]
    Wang, Y., Li, D.X., Thomson, W.J. 1993J. Mater. Res.8195Google Scholar
  13. [13]
    Rouxel, T., Baumard, J.F., Besson, J.L., Valin, F., Boncoeur, M. 1995Eur. J. Solid State Inorg. Chem.32617Google Scholar
  14. [14]
    Kareiva, A., Harlan, C.J., MacQueen, D.B., Cook, R., Barron, A.R. 1996Chem. Mater.82331Google Scholar
  15. [15]
    Atwood, D.A., Yearwood, B.C., Organomet, J. 2000Chem.600186Google Scholar
  16. [16]
    Isobe, T., Omori, M., Uchida, S., Sato, T., Hirai, T. 2002J. Eur. Ceram. Soc.222621Google Scholar
  17. [17]
    Bates, J.L., Garnier, J.E. 1981J. Am. Ceram. Soc.64C-138Google Scholar
  18. [18]
    Liu, Y., Zhang, Z.-F., King, B., Halloran, J., Laine, R.M. 1996J. Am. Ceram. Soc.79385Google Scholar
  19. [19]
    Weber, J.K.R., Krishnan, S., Ansell, S., Hixson, A.D., Nordine, P.C. 2000Phys. Rev. Lett.843622Google Scholar
  20. [20]
    King, B.H., Halloran, J.W. 1995J. Am. Ceram. Soc.782141Google Scholar
  21. [21]
    George, A.M., Mishra,  N.C., Nagar, M.S., Jayadevan, N.C. 1996J. Therm. Anal.47170lGoogle Scholar
  22. [22]
    M. Yada, M. Ohya, M. Machida and T. Kijima, Chem. Commun. (1998) 1941.Google Scholar
  23. [23]
    Veith, M., Mathur, S., Kareiva, A., Jilavi, M., Zimmer, M., Huch, V. 1999J. Mater. Chem.93069Google Scholar
  24. [24]
    Muliuoliene, I., Mathur, S., Jasaitis, D., Shen, H., Sivakov, V., Rapalaviciute, R., Beganskiene, A., Kareiva, A. 2003Opt. Mater.22241Google Scholar
  25. [25]
    A.A. Samarskij, Theory of Finite Difference Schemes (Moscow, 1982).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Feliksas Ivanauskas
    • 1
    • 2
  • Aivaras Kareiva
    • 3
  • Bogdanas Lapcun
    • 2
  1. 1.Institute of Mathematics and InformaticsVilniusLithuania
  2. 2.Department of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  3. 3.Department of ChemistryVilnius UniversityVilniusLithuania

Personalised recommendations