Immiscibility–Miscibility Transition Driven by Distinct Dipolar Orientations in BEC Mixtures

Abstract

We propose a method to study the effect of distinct dipolar orientations on the immiscibility–miscibility transition (IMT) in a binary mixture of dipolar Bose–Einstein condensates in quasi-one dimension. Instead of tilting the dipoles with the same angle, we propose to use different initial orientations which will lead, upon performing a tilt of the whole system, to dipoles pointing in different directions and hence to a better control of the miscible and immiscible phases. The procedure may be conducted in the future by a kind of species-dependent magnetic field.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

References

  1. 1.

    P. Maddaloni, M. Modugno, C. Fort, F. Minardi, M. Inguscio, Phys. Rev. Lett. 85, 2413 (2000)

    ADS  Article  Google Scholar 

  2. 2.

    D.S. Petrov, Phys. Rev. Lett. 115, 155302 (2015)

    ADS  Article  Google Scholar 

  3. 3.

    C. Hamner, J.J. Chang, P. Engels, M.A. Hoefer, Phys. Rev. Lett. 106, 065302 (2011)

    ADS  Article  Google Scholar 

  4. 4.

    I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, T. Pfau, Phys. Rev. Lett. 116, 215301 (2016)

    ADS  Article  Google Scholar 

  5. 5.

    F. Wächtler, L. Santos, Phys. Rev. A 94, 043618 (2016)

    ADS  Article  Google Scholar 

  6. 6.

    A. Trautmann et al., Phys. Rev. Lett. 121, 213601 (2018)

    ADS  Article  Google Scholar 

  7. 7.

    E. Raghunandan, C. Mishra, K. Lakomy, P. Pedri, L. Santos, R. Nath, Phys. Rev. A. 92, 013637 (2015)

    ADS  Article  Google Scholar 

  8. 8.

    M. Wenzel, B. Fabian, T. Langen, I. Ferrier-Barbut, T. Pfau, Phys. Rev. A. 96, 053630 (2017)

    ADS  Article  Google Scholar 

  9. 9.

    P. Shen, K. Quader, J. Phys. Conf. Series 1041, 012011 (2018)

    Article  Google Scholar 

  10. 10.

    A. Hocine, M. Benarous, J. Low Temp. Phys. 194, 209–223 (2019)

    ADS  Article  Google Scholar 

  11. 11.

    R.K. Kumar, P. Muruganandam, L. Tomio, A. Gammal, J. Phys. Commun. 1, 035012 (2017)

    Article  Google Scholar 

  12. 12.

    R.M. Wilson, C. Ticknor, J.L. Bohn, E. Timmermans, Phys. Rev. A 86, 033606 (2012)

    ADS  Article  Google Scholar 

  13. 13.

    G.V. Shlyapnikov, private communication

  14. 14.

    J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio, F. Minardi, A. Kantian, T. Giamarchi, Phys. Rev. A 85, 023623 (2012)

    ADS  Article  Google Scholar 

  15. 15.

    C. D’Errico, A. Burchianti, M. Prevedelli, L. Salasnich, F. Ancilotto, M. Modugno, F. Minardi, C. Fort, Phys. Rev. Res. 1, 033155 (2019)

    Article  Google Scholar 

  16. 16.

    A. Burchianti et al., Condens. Matter 5, 21 (2020)

    Article  Google Scholar 

  17. 17.

    T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, T. Pfau, Rep. Prog. Phys. 72, 126401 (2009)

    ADS  Article  Google Scholar 

  18. 18.

    M.A. Baranov, Phys. Rep. 464, 71–111 (2008)

    ADS  Article  Google Scholar 

  19. 19.

    D.M. Larsen, Ann. Phys. 24, 89 (1963)

    ADS  Article  Google Scholar 

  20. 20.

    W.H. Bassichis, Phys. Rev. A 134, 543 (1964)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Y. A. Nepomnyashchii, Z.H. Eksp. Teor.Fiz. 70, 1070 (1976) Soy.Phys.—JETP 43, 559 (1976)

  22. 22.

    K. Goral, L. Santos, Phys. Rev. A 66, 023613 (2002)

    ADS  Article  Google Scholar 

  23. 23.

    S. Sinha, L. Santos, Phys. Rev. Lett. 99, 140406 (2007)

    ADS  Article  Google Scholar 

  24. 24.

    L. Chomaz et al., Nat. Phys. 14, 442–446 (2018)

    Article  Google Scholar 

  25. 25.

    K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm and F. Ferlaino, Phys. Rev. Lett. 108, 210401 (2012). For more details and references, see A. Frisch, “Dipolar quantum gases of erbium”, PhD dissertation, University of Innsbruck, Innsbruck, 2014

  26. 26.

    M. Lu, N.Q. Burdick, S.H. Youn, B.L. Lev, Phys. Rev. Lett. 107, 190401 (2011)

    ADS  Article  Google Scholar 

  27. 27.

    R. Kishor et al., Comput. Phys. Commun. 195, 117–128 (2015)

    ADS  Article  Google Scholar 

  28. 28.

    P. Muruganandam, S.K. Adhikari, Comput. Phys. Commun. 180, 1888–1912 (2009)

    ADS  Article  Google Scholar 

  29. 29.

    L. Wen, H. Guo, Y. Wang, A. Hu, H. Saito, Ch. Dai, X. Zhang, Phys. Rev. A 101, 033610 (2020)

    ADS  Article  Google Scholar 

  30. 30.

    K. Lee et al., Phys. Rev. 94, 013602 (2016)

    Article  Google Scholar 

  31. 31.

    A.A. Svidzinsky, S.T. Chui, Phys. Rev. A 67, 053608 (2003)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Hocine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hocine, A., Benarous, M. Immiscibility–Miscibility Transition Driven by Distinct Dipolar Orientations in BEC Mixtures. J Low Temp Phys (2021). https://doi.org/10.1007/s10909-021-02567-x

Download citation

Keywords

  • Immiscibility
  • Miscibility
  • dipolar gases
  • BEC mixturee