Journal of Low Temperature Physics

, Volume 197, Issue 1–2, pp 44–60 | Cite as

Homogeneous Paraexciton Dynamics at Ultralow Temperatures by Numerical Simulations

  • Sunipa SomEmail author


This paper presents a theoretical investigation of the relaxation behavior of paraexcitons including exciton–phonon and exciton–exciton collisions as relaxation processes. Paraexcitons have been modeled as a homogeneous gas within cuprous oxide. Special care has been given to the evolution of the distribution function with low and high density of the paraexciton gas and the cooling process. The total working procedure has been described by the Boltzmann equation which is solved numerically using MATLAB. The analysis of the relaxation behavior has been done for the temperatures between 0.1 and 3 K. The numerical calculations show that for very low lattice temperatures (T ≪ 1 K), the process of thermalization is slow, and at 0.1 K, the paraexcitons might not reach the lattice temperature within their finite lifetime. For all the temperatures in the investigated range, when the paraexciton density is significantly higher than the critical density, a high peak of paraexciton occupation number at or near zero energy indicates the occurrence of Bose–Einstein condensation. Therefore, the calculations indicate that the condensation may take place.


Relaxation kinetics of homogeneous paraexcitons at ultralow temperatures Bose–Einstein condensation of homogeneous paraexcitons Numerical simulations of Boltzmann equation with homogeneous paraexcitons Exciton–phonon collisions Exciton–exciton collisions Thermalization process of homogeneous paraexcitons at ultralow temperatures 



I would like to thank Prof. Heinrich Stolz and Dr. Frank Kieseling, University of Rostock (Germany), for their useful discussions.


  1. 1.
    J.M. Blatt, K.W. Boer, W. Brandt, Phys. Rev. 126, 1691 (1962)ADSCrossRefGoogle Scholar
  2. 2.
    S.A. Moskalenko, Fiz. Tverd. Tela (Leningrad) 4, 276 (1962)ADSGoogle Scholar
  3. 3.
    S.A. Moskalenko, Sov. Phys. Solid State 4, 199 (1962)Google Scholar
  4. 4.
    A. Griffin, D.W. Snoke, S. Stringari, Bose–Einstein Condensation (Cambridge University Press, Cambridge, 1995)CrossRefGoogle Scholar
  5. 5.
    D.W. Snoke, Science 298, 1368 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    D. Snoke, G.M. Kavoulakis, Rep. Prog. Phys. 77(11), 116501 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    C. Ell, A.L. Ivanov, H. Haug, Phys. Rev. B 57, 9663 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    A.L. Ivanov, C. Ell, H. Haug, Phys. Rev. E 55, 6363 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    A.L. Ivanov, C. Ell, H. Haug, Phys. Status Solidi B 206, 235 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    K.E. O’Hara, J.P. Wolfe, Phys. Rev. B 62, 12909 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    D.W. Snoke, J.P. Wolfe, Phys. Rev. B 39, 4030 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    D.W. Snoke, W.W. Ruhle, Y.C. Lu, E. Bauser, Phys. Rev. B 45, 10979 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    L.V. Butov, C.W. Lai, A.L. Ivanov, A.C. Gossard, D.S. Chemla, Nature 417, 47 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    N. Naka, N. Nagasawa, J. Lumin. 112, 11 (2005)CrossRefGoogle Scholar
  15. 15.
    L.V. Butov, A.C. Gossard, D.S. Chemla, Nature 418, 751 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    D. Snoke, S. Denev, Y. Liu, L. Pfeiffer, K. West, Nature 418, 754 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    H. Deng, G. Weihs, C. Santori, J. Bloch, Y. Yamamoto, Science 298, 199 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymańska, R. Andre, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dan, Nature 443, 409 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316, 1007 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    S. Som, F. Kieseling, H. Stolz, J. Phys. Condens. Matter 24, 335803 (2012)CrossRefGoogle Scholar
  21. 21.
    K. Yoshioka, E. Chae, M. Kuwata-Gonokami, Nat. Commun. 2, 328 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    R. Schwartz, N. Naka, F. Kieseling, H. Stolz, New J. Phys. 14, 023054 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    H. Stolz, R. Schwartz, F. Kieseling, S. Som, M. Kaupsch, S. Sobkowiak, D. Semkat, N. Naka, Th Koch, H. Fehske, New J. Phys. 14, 105007 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    K. Yoshioka, Y. Morita, K. Fukuoka, M. Kuwata-Gonokami, Phys. Rev. B 88, 041201 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    M. Beian, M. Alloing, R. Anankine, E. Cambril, C.G. Carbonell, A. Lemaitre, F. Dubin, Europhys. Lett. 119, 37004 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt Brace College Publishers, Fort Worth, 1976)zbMATHGoogle Scholar
  27. 27.
    E.S. William, W.G. Graham, A Compendium of Partial Differential Equation Models (CambridgeUniversity Press, Cambridge, 2009)zbMATHGoogle Scholar
  28. 28.
    L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Addison-Wesley Publishing Company, Redwood City, 1989)zbMATHGoogle Scholar
  29. 29.
    K.E. O’Hara, Ph.D. Thesis, University of Illinois, Urbana, Illinois, USA (1999)Google Scholar
  30. 30.
    D.V. Semikoz, I.I. Tkachev, Phys. Rev. Lett. 74, 3093 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    E. Hanamura, H. Haug, Phys. Rep. C 33, 209 (1977)ADSCrossRefGoogle Scholar
  32. 32.
    O.M. Schmitt, D.B. Tran Thoai, L. Bányai, P. Gartner, H. Haug, Phys. Rev. Lett. 86, 3839 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    J.P. Wolfe, J.I. Jang, New J. Phys. 16, 123048 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    M. Combescot, R. Combescot, F. Dubin, Rep. Prog. Phys. 80, 066501 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    G.M. Kavoulakis, G. Baym, J.P. Wolfe, Phys. Rev. B 53, 7227 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    M. Kubouchi, K. Yoshioka, R. Shimano, A. Mysyrowicz, M. Kuwata-Gonokami, Phys. Rev. Lett. 94, 016403 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    H. Haug, Z. Phys, B Condensed Matter 24, 351 (1976)Google Scholar
  38. 38.
    S.G. Elkomoss, G. Munschy, J. Phys. Chem. Solids 42, 1 (1981)ADSCrossRefGoogle Scholar
  39. 39.
    S.G. Elkomoss, G. Munschy, J. Phys. Chem. Solids 45, 345 (1984)ADSCrossRefGoogle Scholar
  40. 40.
    J. Shumway, D.M. Ceperley, Phys. Rev. B 63, 165209 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    D.W. Snoke, D. Braun, M. Cardona, Phys. Rev. B 44, 2991 (1991)ADSCrossRefGoogle Scholar
  42. 42.
    C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, P. Schwendimann, Phys. Rev. B 58, 7926 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    T.S. Koh, Y.P. Feng, H.N. Spector, Phys. Rev. B 55, 9271 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    H.N. Cam, Phys. Rev. B 55, 10487 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNehru Gram Bharati UniversityAllahabadIndia

Personalised recommendations