Journal of Low Temperature Physics

, Volume 197, Issue 1–2, pp 34–43 | Cite as

Diagram Approach to the Problem of the Normal Phase Properties of the Spin-Polaron Ensemble in Cuprate Superconductors

  • V. V. Val’kov
  • V. A. Mitskan
  • M. M. KorovushkinEmail author
  • D. M. Dzebisashvili
  • A. F. Barabanov


Taking into account the real crystalline structure of the \(\hbox {CuO}_2\) plane within the spin-fermion model and using the diagram technique, the spin-polaron concept of the fermionic excitations in cuprate superconductors is implemented. It is shown that an account of the on-site scattering processes leads to considerable binding energy of the spin-polaron quasiparticles. An account of the two-site spin-fermion scattering processes results in the energy spectrum and spectral properties of the spin-polaron quasiparticles which agree well with experimental data on cuprate superconductors.


Cuprate superconductors Unconventional superconductivity Spin-charge correlations 



The work was supported by the program of the Presidium of the Russian Academy of Sciences No. 12 “Fundamental problems of high-temperature superconductivity,” the Russian Foundation for Basic Research (RFBR) (Projects Nos. 18-02-00837 and 19-02-00509) and partly by the Government of Krasnoyarsk Region and the Krasnoyarsk Region Science and Technology Support Fund (Projects Nos. 18-42-243002 “Manifestation of spin-nematic correlations in spectral characteristics of electronic structure and their influence on practical properties of cuprate superconductors,” 18-42-243018 “Contact phenomena and magnetic disorder in the problem of the formation and detection of topological edge states in semiconductor nanostructures,” and 18-42-240014 “Single-orbit effective model of an ensemble of spin-polaron quasiparticles in the problem of describing the intermediate state and pseudogap behavior of cuprate superconductors”).


  1. 1.
    A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    P.A. Lee, N. Nagaosa, X.-G. Wen, Rev. Mod. Phys. 78, 173 (2006)CrossRefGoogle Scholar
  3. 3.
    M. Eschrig, Adv. Phys. 55, 47 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    T. Timusk, B. Statt, Rep. Prog. Phys. 62, 61 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    M.V. Sadovskii, Phys. Usp. 44, 515 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    A. F. Barabanov, L. A. Maksimov, A. V. Mikheyenkov, in Theory of the Spin-Polaron for 2D Antiferromagnets, Lectures on the Physics of Highly Correlated Electron Systems IV, ed. by F. Mancini, AIP Conference Proceedings, vol 527, p. 1 (2000) Google Scholar
  7. 7.
    A.F. Barabanov, A.V. Mikheenkov, A.M. Belemuk, JETP Lett. 75, 107 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    A.F. Barabanov, L.A. Maksimov, G.V. Uimin, JETP Lett. 47, 622 (1988) ADSGoogle Scholar
  9. 9.
    A.F. Barabanov, L.A. Maksimov, G.V. Uimin, Sov. Phys. JETP 69, 371 (1989)Google Scholar
  10. 10.
    P. Prelovšek, Phys. Lett. A. 126, 287 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    J. Zaanen, A.M. Oleś, Phys. Rev. B. 37, 9423 (1988)ADSCrossRefGoogle Scholar
  12. 12.
    E.B. Stechel, D.R. Jennison, Phys. Rev. B. 38, 4632 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    V.J. Emery, G. Reiter, Phys. Rev. B. 38, 4547 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    H. Matsukawa, H. Fukuyama, J. Phys. Soc. Jpn. 58, 2845 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    D.M. Dzebisashvili, V.V. Val’kov, A.F. Barabanov, JETP Lett. 98, 528 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    V.V. Val’kov, D.M. Dzebisashvili, A.F. Barabanov, Phys. Lett. A 379, 421 (2015)CrossRefGoogle Scholar
  17. 17.
    V.V. Val’kov, D.M. Dzebisashvili, M.M. Korovushkin, A.F. Barabanov, JETP Lett. 103, 385 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    V.V. Val’kov, D.M. Dzebisashvili, M.M. Korovushkin, A.F. Barabanov, J. Low Temp. Phys. 191, 408 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    V.J. Emery, Phys. Rev. Lett. 58, 2794 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    C.M. Varma, S. Schmitt-Rink, E. Abrahams, Solid State Commun. 62, 681 (1987)ADSCrossRefGoogle Scholar
  21. 21.
    F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    V.V. Val’kov, D.M. Dzebisashvili, A.F. Barabanov, J. Supercond. Nov. Magn. 29, 1049 (2016)CrossRefGoogle Scholar
  23. 23.
    V.V. Val’kov, V.A. Mitskan, D.M. Dzebisashvili, A.F. Barabanov, Low Temp. Phys. 44, 130 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    T. Matsubara, Prog. Theor. Phys. 14, 351 (1955)ADSCrossRefGoogle Scholar
  25. 25.
    A.A. Abrikosov, L.P. Gor’kov, I.E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, Prentice Hall, Englewood Cliffs (Pergamon Press, New York, 1963)Google Scholar
  26. 26.
    V.G. Bar’yakhtar, V.E. Krivoruchko, D.A. Yablonskii, Green’s Functions in Magnetism Theory (Naukova Dumka, Kiev, 1984). [in Russian]Google Scholar
  27. 27.
    H. Shimahara, S. Takada, J. Phys. Soc. Jpn. 60, 2394 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    A.F. Barabanov, V.M. Berezovskii, JETP 79, 627 (1994)ADSGoogle Scholar
  29. 29.
    A.F. Barabanov, A.V. Mikheenkov, A.V. Shvartsberg, Theor. Math. Phys. 168, 1192 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • V. V. Val’kov
    • 1
  • V. A. Mitskan
    • 1
    • 2
  • M. M. Korovushkin
    • 1
    Email author
  • D. M. Dzebisashvili
    • 1
    • 2
  • A. F. Barabanov
    • 3
  1. 1.Kirensky Institute of PhysicsFederal Research Center KSC SB RASKrasnoyarskRussia
  2. 2.Siberian State University of Science and TechnologyKrasnoyarskRussia
  3. 3.Vereshchagin Institute for High Pressure PhysicsTroitsk, MoscowRussia

Personalised recommendations