Skip to main content
Log in

Decay of Phase-Imprinted Dark Soliton in Bose–Einstein Condensate at Nonzero Temperature

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study relaxation dynamics of dark soliton, created by a phase-imprinted method, in a two-dimensional trapped Bose–Einstein condensate at nonzero temperatures by using the projected Gross–Pitaevskii equation. At absolute zero temperature, a dark soliton is known to decay with a snake instability. At nonzero temperature, as expected, we find that this snake instability cannot be seen as clearly as in the absolute zero temperature case because of the presence of thermal fluctuations. We find that the energy dependence of the decay rate, defined by the half-life of the fidelity with respect to the phase-imprinted initial state, shows a power law decay and approaches a nonzero value in the large energy limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Burger et al., Dark solitons in Bose–Einstein condensates. Phys. Rev. Lett. 83, 5198 (1999)

    Article  ADS  Google Scholar 

  2. J. Denschlag et al., Generating solitons by phase engineering of a Bose–Einstein condensate. Science 287, 97 (2000)

    Article  ADS  Google Scholar 

  3. C. Becker et al., Oscillations and interactions of dark and dark-bright solitons in Bose–Einstein condensates. Nat. Phys. 4, 496 (2008)

    Article  Google Scholar 

  4. J. Brand, W.P. Reinhardt, Solitonic vortices and the fundamental modes of the snake instability: possibility of observation in the gaseous Bose–Einstein condensate. Phys. Rev. A 65, 043612 (2002)

    Article  ADS  Google Scholar 

  5. A.V. Mamaev, M. Saffman, A.A. Zozulya, Propagation of dark stripe beams in nonlinear media: snake instability and creation of optical vortices. Phys. Rev. Lett. 76, 2262 (1996)

    Article  ADS  Google Scholar 

  6. D.L. Feder et al., Dark-soliton states of Bose–Einstein condensates in anisotropic traps. Phys. Rev. A 62, 053606 (2000)

    Article  ADS  Google Scholar 

  7. Z. Dutton et al., Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose–Einstein condensate. Science 293, 663 (2001)

    Article  ADS  Google Scholar 

  8. L. Pitaevskii, S. Stringer, Bose–Einstein Condensation (Clarendon Press, Oxford, 2003)

    MATH  Google Scholar 

  9. B. Jackson, N.P. Proukakis, C.F. Barenghi, Dark-soliton dynamics in Bose–Einstein condensates at finite temperature. Phys. Rev. A 75, 051601 (2007)

    Article  ADS  Google Scholar 

  10. M.J. Davis, S.A. Morgan, K. Burnett, Simulations of Bose fields at finite temperature. Phys. Rev. Lett. 87, 160402 (2001)

    Article  ADS  Google Scholar 

  11. M.J. Davis, S.A. Morgan, K. Burnett, Simulations of thermal Bose fields in the classical limit. Phys. Rev. A 66, 053618 (2002)

    Article  ADS  Google Scholar 

  12. M.J. Davis, S.A. Morgan, Microcanonical temperature for a classical field: application to Bose–Einstein condensation. Phys. Rev. A 68, 053615 (2003)

    Article  ADS  Google Scholar 

  13. P.B. Blakie, M.J. Davis, Projected Gross–Pitaevskii equation for harmonically confined Bose gases at finite temperature. Phys. Rev. A 72, 063608 (2005)

    Article  ADS  Google Scholar 

  14. P.B. Blakie, M.J. Davis, Classical region of a trapped Bose gas. J. Phys. B At. Mol. Opt. Phys. 40, 2043 (2007)

    Article  ADS  Google Scholar 

  15. P.B. Blakie et al., Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Adv. Phys. 57, 363 (2008)

    Article  ADS  Google Scholar 

  16. P.B. Blakie, Numerical method for evolving the projected Gross–Pitaevskii equation. Phys. Rev. E 78, 026704 (2008)

    Article  ADS  Google Scholar 

  17. T. Sato, T. Suzuki, N. Kawashima, Finite-temperature transition in a quasi-2D Bose gas trapped in the harmonic potential. J. Phys. Conf. Ser. 150, 032094 (2009)

    Article  Google Scholar 

  18. H.H. Rugh, Microthermodynamic formalism. Phys. Rev. E 64, 055101(R) (2001)

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Sato et al., Validity of projected Gross–Pitaevskii simulation: comparison with quantum Monte Carlo. Phys. Rev. E 85, 050105(R) (2012)

    Article  ADS  Google Scholar 

  20. J. Sato et al., Exact relaxation dynamics of a localized many-body state in the 1D Bose gas. Phys. Rev. Lett. 108, 110401 (2012)

    Article  ADS  Google Scholar 

  21. Z. Hadzibabic et al., Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas. Nature 441, 1118 (2006)

    Article  ADS  Google Scholar 

  22. C.L. Hung et al., Observation of scale invariance and universality in two-dimensional Bose gases. Nature 470, 236 (2011)

    Article  ADS  Google Scholar 

  23. R.J. Fletcher et al., Connecting Berezinskii–Kosterlitz–Thouless and BEC phase transitions by tuning interactions in a trapped gas. Phys. Rev. Lett. 114, 255302 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors thank T. Sato for discussing implementation of the PGPE. S.W. was supported by JSPS KAKENHI Grant No. JP16K17774. T.N. was supported by JSPS KAKENHI Grant No. JP16K05504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohei Watabe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohya, H., Watabe, S. & Nikuni, T. Decay of Phase-Imprinted Dark Soliton in Bose–Einstein Condensate at Nonzero Temperature. J Low Temp Phys 196, 140–146 (2019). https://doi.org/10.1007/s10909-019-02180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02180-z

Keywords

Navigation