Skip to main content
Log in

Optical Lattice Effects on Shannon Information Entropy in Rotating Bose–Einstein Condensates

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the formation of Shannon information entropy in a rotating Bose–Einstein condensates confined in a harmonic potential combined with an optical lattice (OL) using the mean field Gross–Pitaevskii equation. With the increase of OL depth \(V_0\), at the same rotational frequency \(\Omega \), we show that the information entropy increases in momentum space \(S_r\) and total entropy S and it decreases in position space \(S_k\). We also calculate the Landsberg order parameter \(\delta \) and its dependence on \(\Omega \). We find that the critical points between the case of OL and non-OL move along the direction of decreasing \(\Omega \) with the increase of \(V_0\). In particular, the dynamics behaviors indicate that the periodicity of S and \(S_{\text{ max }}\) loses due to the broken symmetry when OL is added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. I. Bialynicki-Birula, J. Mycielski, Commun. Math. Phys. 44, 129 (1975)

    Article  ADS  Google Scholar 

  2. S.R. Gadre, Phys. Rev. A 30, 620 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Ohya, P. Petz, Quantum Entropy and Its Use (Springer, Berlin, 1993)

    Book  MATH  Google Scholar 

  4. V.V. Sokolov, B.A. Brown, V. Zelevinsky, Phys. Rev. E 58, 56 (1998)

    Article  ADS  Google Scholar 

  5. A. Nagy, R.G. Parr, Int. J. Quantum Chem. 58, 323 (1996)

    Article  Google Scholar 

  6. C.P. Panos, S.E. Massen, Int. J. Mod. Phys. E 6, 497 (1997)

    Article  ADS  Google Scholar 

  7. V. Zelevinsky, M. Horoi, B.A. Brown, Phys. Lett. B 350, 141 (1995)

    Article  ADS  Google Scholar 

  8. S.E. Massen, V.P. Psonis, A.N. Antonov, Int. J. Mod. Phys. E 14, 1251 (2005)

    Article  ADS  Google Scholar 

  9. N.L. Guevara, R.P. Sagar, R.O. Esquivel, J. Chem. Phys. 119, 7030 (2003)

    Article  ADS  Google Scholar 

  10. N.L. Guevara, R.P. Sagar, R.O. Esquivel, J. Chem. Phys. 122, 084101 (2005)

    Article  ADS  Google Scholar 

  11. R.P. Sagar, N.L. Guevara, J. Chem. Phys. 123, 044108 (2005)

    Article  ADS  Google Scholar 

  12. Ch.C. Moustakidis, S.E. Massen, Phys. Rev. B 71, 045102 (2005)

  13. S.E. Massen, V.P. Panos, Int. J. Mod. Phys. E 20, 1817 (2011)

    Article  ADS  Google Scholar 

  14. S.T. Tserkis, Ch.C. Moustakidis, S.E. Massen, C.P. Panos, Phys. Lett. A 378, 497 (2014)

  15. J. R. McKenney, W. J. Porter, J. E. Drut, arXiv:1709.09981

  16. K. Kasamatsu, M. Tsubota, M. Ueda, Int. J. Mod. Phys. B 19, 1835 (2005)

    Article  ADS  Google Scholar 

  17. M. Ueda, Fundamentals and New Frontiers of Bose–Einstein Condensation (World Scientific, Singapore, 2010)

    Book  MATH  Google Scholar 

  18. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 83, 2498 (1999)

    Article  ADS  Google Scholar 

  19. K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Phys. Rev. Lett. 84, 806 (2000)

    Article  ADS  Google Scholar 

  20. S.K. Adhikari, Phys. Rev. A 81, 043636 (2010)

    Article  ADS  Google Scholar 

  21. A. Kato, Y. Nakano, K. Kasamatsu, Phys. Rev. A 84, 053623 (2011)

    Article  ADS  Google Scholar 

  22. J.W. Reijnders, R.A. Duine, Phys. Rev. Lett. 93, 060401 (2004)

    Article  ADS  Google Scholar 

  23. H. Pu, L.O. Baksmaty, S. Yi, N.P. Bigelow, Phys. Rev. Lett. 94, 190401 (2005)

    Article  ADS  Google Scholar 

  24. T. Sato, T. Ishiyama, T. Nikuni, Phys. Rev. A 76, 053628 (2007)

    Article  ADS  Google Scholar 

  25. D.S. Goldbaum, E.J. Mueller, Phys. Rev. A 77, 033629 (2008)

    Article  ADS  Google Scholar 

  26. H. Sakaguchi, B.A. Malomed, Phys. Rev. A 75, 013609 (2007)

    Article  ADS  Google Scholar 

  27. H. Sakaguchi, B.A. Malomed, Phys. Rev. A 78, 063606 (2008)

    Article  ADS  Google Scholar 

  28. H. Sakaguchi, B.A. Malomed, Phys. Rev. A 79, 043606 (2009)

    Article  ADS  Google Scholar 

  29. W. Bao, H.Q. Wang, P.A. Markowich, Commun. Math. Sci. 3, 57 (2005)

    Article  MathSciNet  Google Scholar 

  30. S.E. Massen, Ch.C. Moustakidis, C.P. Panos, Phys. Lett. A 299, 131–136 (2002)

  31. S.R. Gadre, R.D. Bendale, Phys. Rev. A 36, 1932 (1987)

    Article  ADS  Google Scholar 

  32. P.T. Landsberg, Phys. Lett. A 102, 171 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  33. Q. Zhao, J. Low Temp. Phys. 182, 117 (2016)

    Article  ADS  Google Scholar 

  34. Q. Zhao, L.L. Zhang, Z. Rui, Int. J. Theor. Phys. 57, 2921 (2018)

    Article  Google Scholar 

  35. R. Kishor Kumar, B. Chakrabarti, A. Gammal, J. Low. Temp. Phys. (2018). https://doi.org/10.1007/s10909-018-2051-8

  36. W. Bao, H.Q. Wang, J. Comput. Phys. 217, 612 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  37. R.K. Kumar, P. Muruganandama, Eur. Phys. J. D 68, 289 (2014)

    Article  ADS  Google Scholar 

  38. S.E. Massen, C.P. Panos, Phys. Lett. A 280, 65–69 (2001)

    Article  ADS  Google Scholar 

  39. T. Sriraman, B. Chakrabarti, A. Trombettoni, P. Muruganandam, J. Chem. Phys. 147, 044304 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Weizhu Bao for his help on the numerical calculation. Q.Z. is supported by the Applied Basic Research Programs of Tangshan (Grant No. 18130219a). Innovation Fund (Grant No. X2017287) and Ph.D. Start-up Fund (Grant No. BS2017096) of North China University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhao.

Appendix A: Details for Calculating \(S_r\) and \(S_k\)

Appendix A: Details for Calculating \(S_r\) and \(S_k\)

Gadre and Bendale[31] established a connection between \(S_r\) and \(S_k\) with the total kinetic energy T and mean square radius \(\langle r^{2} \rangle \) of the system which has been derived using EUR [39].

$$\begin{aligned}&{S_r}_{\text{ min }} \leqslant S_r \leqslant {S_r}_{\text{ max }} , \end{aligned}$$
(A1)
$$\begin{aligned}&{S_k}_{\text{ min }} \leqslant S_k \leqslant {S_k}_{\text{ max }} ,\end{aligned}$$
(A2)
$$\begin{aligned}&{S}_{\text{ min }} \leqslant S \leqslant {S}_{\text{ max }}. \end{aligned}$$
(A3)

For density distribution normalized to unity, the above lower and upper limits took the form

$$\begin{aligned} {S_r}_{\text{ min }}= & {} \frac{3}{2}(1+ \ln \pi ) - \frac{3}{2} \ln \left( \frac{4}{3} T \right) , \end{aligned}$$
(A4a)
$$\begin{aligned} {S_r}_{\text{ max }}= & {} \frac{3}{2}(1+ \ln \pi ) + \frac{3}{2} \ln \left( \frac{2}{3} \langle r^{2} \rangle \right) , \end{aligned}$$
(A4b)
$$\begin{aligned} {S_k}_{\text{ min }}= & {} \frac{3}{2}(1+ \ln \pi ) - \frac{3}{2} \ln \left( \frac{2}{3} \langle r^{2} \rangle \right) , \end{aligned}$$
(A4c)
$$\begin{aligned} {S_k}_{\text{ max }}= & {} \frac{3}{2}(1+ \ln \pi ) + \frac{3}{2} \ln \left( \frac{4}{3} T \right) , \end{aligned}$$
(A4d)
$$\begin{aligned} {S}_{\text{ min }}= & {} 3(1+ \ln \pi ), \end{aligned}$$
(A4e)
$$\begin{aligned} {S}_{\text{ max }}= & {} 3(1+ \ln \pi ) + \frac{3}{2} \ln \left( \frac{8}{9} \langle r^{2} \rangle T \right) . \end{aligned}$$
(A4f)

Massen and Panos [38] presented the values of the lower and upper bound of S as in Eq. (A4). In the present work, we calculate numerically the values in Eq. (7) and the results are presented in Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Zhao, J. Optical Lattice Effects on Shannon Information Entropy in Rotating Bose–Einstein Condensates. J Low Temp Phys 194, 302–311 (2019). https://doi.org/10.1007/s10909-018-2099-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2099-5

Keywords

Navigation