Skip to main content
Log in

Operation of a Latching, Low-Loss, Wideband Microwave Phase-Change Switch Below 1 K

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report on the design, fabrication, and demonstration of the operation of a latching (nonvolatile) low-loss microwave switch at 4.2 K and 40 mK using the phase-change material germanium telluride (GeTe) as the switching element. The single-pole double-throw (SPDT) series–shunt switch has a single RF input and two selectable RF outputs. An insertion loss of less than 1 dB from DC to 10 GHz was demonstrated, with virtually identical performance across 5000 switching cycles at 40 mK. We have also characterized the resistance of the GeTe thin-film material used in the fabrication of the SPDT switch from room temperature down to 11 mK. While bulk GeTe is known to become superconducting below 1 K, these GeTe films showed no detectable superconducting transition, resulting in a switch with finite on-state DC resistance. Given the wide range of phase-change material candidates reported in the literature and prior evidence of superconductivity, this demonstration paves the way for future development of a near-ideal switch which could have zero on-state DC resistance at cryogenic temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jen-Hao Yeh, Steven M. Anlage, In situ broadband cryogenic calibration for two-port superconducting microwave resonators. Rev. Sci. Instrum. 84, 034706 (2013). https://doi.org/10.1063/1.479746

    Article  ADS  Google Scholar 

  2. J.M. Hornibrook, J.I. Colless, I.D. Conway Lamb, S.J. Pauka, H. Lu, A.C. Gossard, J.D. Watson, G.C. Gardner, S. Fallahi, M.J. Manfra, D.J. Reilly, Cryogenic control architecture for large-scale quantum computing. Phys. Rev. Appl. (2015). https://doi.org/10.1103/PhysRevApplied.3.024010

    Google Scholar 

  3. E. Charbon, F. Sebastiano, A. Vladimirescu, H. Homulle, S Visser, L. Song, R. Incandela, Cryo-CMOS for quantum computing, 2016 IEEE International Electron Devices Meeting (IEDM). https://doi.org/10.1109/iedm.2016.7838410

  4. Harald Homulle, Stefan Visser, Bishnu Patra, Giorgio Ferrari, Enrico Prati, Fabio Sebastiano, Edoardo Charbon, A reconfigurable cryogenic platform for the classical control of quantum processors. Rev. Sci. Instrum. 88, 045103 (2017). https://doi.org/10.1063/1.4979611

    Article  ADS  Google Scholar 

  5. O. Naaman, M.O. Abutaleb, C. Kirby, M. Rennie, On-chip Josephson junction microwave switch. Appl. Phys. Lett. 108, 112601 (2016). https://doi.org/10.1063/1.4943602

    Article  ADS  Google Scholar 

  6. James G. Champlain, Laura B. Ruppalt, Andrew C. Guyette, Nabil El-Hinnawy, Pavel Borodulin, Evan Jones, Robert M. Young, Doyle Nichols, Examination of the temperature dependent electronic behavior of GeTe for switching applications. J. Appl. Phys. 119, 244501 (2016). https://doi.org/10.1063/1.4954313

    Article  ADS  Google Scholar 

  7. Nabil El-Hinnawy, Pavel Borodulin, Matthew R. King, Carlos R. Padilla, Andris Ezis, Doyle T. Nichols, Jeyanandh Paramesh, James A. Bain, Robert M. Young, Origin and optimization of RF power handling limitations in chalcogenide-based inline phase-change switches. IEEE Trans. Electron Device 64(9), 3934–3942 (2017). https://doi.org/10.1109/ted.2017.2730231

    Article  ADS  Google Scholar 

  8. P. Borodulin, N. El-Hinnawy, C.R. Padilla, A. Ezis, M. R. King, D. R. Johnson, D. T. Nichols, R. M. Young, Recent advances in fabrication and characterization of GeTe-based Phase-change RF Switches and MMICs, in Microwave Symposium (IMS), 2017 IEEE MTT-S International (4–9 June 2017) pp. 285–288. https://doi.org/10.1109/mwsym.2017.8059098

  9. Nabil El-Hinnawy, Pavel Borodulin, Brian P. Wagner, Matthew R. King, Evan B. Jones, Robert S. Howell, Michael J. Lee, Robert M. Young, Low-loss latching microwave switch using thermally pulsed non-volatile chalcogenide phase change materials. Appl. Phys. Lett. 105, 013501 (2014). https://doi.org/10.1063/1.4885388

    Article  ADS  Google Scholar 

  10. R.M. Young, P. Borodulin, N. El-Hinnawy, A. Ezis, M.R. King, V. Luu, D.T. Nichols, Improvements in GeTe-based phase change RF switches, in Microwave Symposium (IMS), 2018 IEEE MTT-S International (10–15 June 2018)

  11. R.M. Young, N. El-Hinnawy, P. Borodulin, B.P. Wagner, M.R. King, E.B. Jones, R.S. Howell, M.J. Lee, Thermal analysis of an indirectly heat pulsed non-volatile phase change material microwave switch. J. Appl. Phys. 116(5), 54504 (2014). https://doi.org/10.1063/1.4891239

    Article  ADS  Google Scholar 

  12. J. Moon, H. Seo, K. Son, K. Lee, D. Zehnder, and H. Tai, 5 THz Figure-of-merit reliable phase-change RF switches for millimeter-wave applications, in Microwave Symposium (IMS), 2018 IEEE MTT-S International (10–15 June 2018)

  13. W.J. Chappell, T.M. Hancock, and R.H. Olsson III, Can phase change materials put the radio into software defined radio?, in Microwave Symposium (IMS), 2018 IEEE MTT-S International (10–15 June 2018)

  14. Taiquan Zhang, Yu. Yujin Wang, Guiming Song Zhou, High temperature electrical resistivities of ZrC particle–reinforced tungsten-matrix composites. Int. J. Refract. Metal Hard Mater. 28(4), 498–502 (2010). https://doi.org/10.1016/j.ijrmhm.2010.02.007

    Article  Google Scholar 

  15. P.D. Desai, T.K. Chu, H.M. James, C.Y. Ho, Electrical resistivity of selected elements. J. Phys. Chem. Ref. Data 13, 1069 (1984). https://doi.org/10.1063/1.555723

    Article  ADS  Google Scholar 

  16. A.E. Lita, D. Rosenberg, S. Nam, A.J. Miller, D. Balzar, L.M. Kaatz, R.E. Schwall, Tuning of tungsten thin film superconducting transition temperature for fabrication of photon number resolving detectors. IEEE Trans. Appl. Supercond. 15(2), 3528–3531 (2005). https://doi.org/10.1109/tasc.2005.849033

    Article  ADS  Google Scholar 

  17. B.W. Roberts, Survey of superconductive materials and critical evaluation of selected properties. J. Phys. Chem. Ref. Data 5, 581 (1976). https://doi.org/10.1063/1.555540

    Article  ADS  Google Scholar 

  18. S. Ohya, B. Chiaro, A. Megrant, C. Neill, R. Barends, Y. Chen, J. Kelly, D. Low, J. Mutus, P.J.J. O’Malley, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T.C. White, Y. Yin, B.D. Schultz, C.J. Palmstrøm, B.A. Mazin, A.N. Cleland, J.M. Martinis, Room temperature deposition of sputtered TiN films for superconducting coplanar waveguide resonators. Supercond. Sci. Technol. 27, 015009 (2014). https://doi.org/10.1088/09532048/27/1/015009

    Article  ADS  Google Scholar 

  19. Alan M. Kadin, Introduction to Superconducting Circuits, 1st edn. (Wiley, Hoboken, 1999), p. 80, 110, 164

    Google Scholar 

  20. L.J. van der Pauw, A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res. Rep. 13, 1–9 (1958)

    Google Scholar 

  21. T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, M. Wuttig, Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10, 202–208 (2011). https://doi.org/10.1038/nmat2934. Supplementary Information

    Article  ADS  Google Scholar 

  22. S.K. Bahl, K.L. Chopra, Amorphous vs crystalline GeTe films. III electrical properties and band structure. J. Appl. Phys. 41(5), 2196–2212 (1974)

    Article  ADS  Google Scholar 

  23. G. Slovin, Design and Fabrication of 4-Termianl RF Phase Change Switch, Doctoral Thesis (Carnegie Mellon University, Pittsburgh, 2015)

    Google Scholar 

  24. M.A. Korzhuev, L.I. Petrova, Low-temperature electroresistance and the Debye temperature of GeTe. Sov. Phys. Semicond. 15(3), 290 (1981)

    Google Scholar 

  25. L.E. ShelimovaO, G. KarpinskiiP, P. KonstantinovM, A. KretovaE, S. AvilovV, S. Zemskov, Composition and properties of layered compounds in the GeTe–Sb2Te3 system. Inorg. Mater. 37(4), 342–348 (2001)

    Article  Google Scholar 

  26. R.R. Helkes, R.C. Miller, R.W. Ure, Jr., in Thermoelectricity- Science and Engineering, R.C. Miller, Ed. (Interscience, NY, 1961) chap. 13

  27. NKh Abrikosov, O.G. Karpinskii, L.E. Shelimova, M.A. Korzhuev, Izv. Akad. Nauk SSSR, Neorg. Mater. 13, 2160 (1977)

    Google Scholar 

  28. Rui Lan, Rie Endo, Masashi Kuwahara, Yoshinao Kobayashi, Masahiro Susa, Electrical and heat conduction mechanisms of GeTe alloy for phase change memory application. J. Appl. Phys. 112, 053712 (2012). https://doi.org/10.1063/1.4751018

    Article  ADS  Google Scholar 

  29. R.A. Hein, J.W. Gibson, R. Mazelsky, R.C. Miller, J.K. Hulm, Superconductivity in germanium telluride. Phys. Rev. Lett. 12, 320 (1964). https://doi.org/10.1103/PhysRevLett.12.320

    Article  ADS  Google Scholar 

  30. L. Finegold, Germanium telluride: specific heat and superconductivity. Phys. Rev. Lett. 13(7), 233 (1964)

    Article  ADS  Google Scholar 

  31. S. Geller, G.W. Hull Jr., Superconductivity of intermetallic compounds with NaCl-type and related structures. Phys. Rev. Lett. 13, 127 (1964). https://doi.org/10.1103/PhysRevLett.13.127

    Article  ADS  Google Scholar 

  32. M.R. King, Development of phase change materials for RF switch applications, North Carolina State University, Ph.D. Dissertation (2016)

  33. J.K. Hulm, C.K. Jones, D.W. Deis, H.A. Fairbank, P.A. Lawless, Superconducting interactions in tin telluride. Phys. Rev. 169, 388 (1968). https://doi.org/10.1103/PhysRev.169.388

    Article  ADS  Google Scholar 

  34. L. De La Cruz, A.G. Birdwell1, M. Zaghloul, Tony G. Ivanov, GeTe phase change research at the US army research laboratory, in Microwave Symposium (IMS), 2018 IEEE MTT-S International (10–15 June 2018)

  35. Nabil El-Hinnawy, Development, optimization, and integration of inline phase-change switches for reconfigurable RF systems, Carnegie Mellon University, Ph.D. Dissertation (2018)

  36. M. Hansen, K. Anderko, Constitution of Binary Alloys, 2nd edn. (Genium Publ. Comp, Schenectady, NY, 1985), pp. 776–777

    Google Scholar 

  37. Alan M. Kadin, Introduction to Superconducting Circuits, 1st edn. (Wiley, Hoboken, 1999), p. 251

    Google Scholar 

  38. G.M. Rebeiz, J.B. Muldavin, RF MEMS switches and switch circuits. Microw. Mag. 2(4), 59 (2001). https://doi.org/10.1109/6668.969936

    Article  Google Scholar 

Download references

Acknowledgements

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions, and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Young.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodulin, P., El-Hinnawy, N., Graninger, A.L. et al. Operation of a Latching, Low-Loss, Wideband Microwave Phase-Change Switch Below 1 K. J Low Temp Phys 194, 273–284 (2019). https://doi.org/10.1007/s10909-018-2096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2096-8

Keywords

Navigation