Skip to main content
Log in

Spin–Flip Relaxation Between the Landau Levels in Gapped Graphene

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Within the frame of the Huang–Rhys’s lattice relaxation model, we theoretically investigate the spin–flip relaxation assisted by two-phonon processes between the zeroth and first-excited Landau level in gapped graphene on different polar substrates. We give the comparisons between the spin-conserving and the spin–flip of two-phonon processes, which are composed of the surface-optical phonons and longitudinal acoustic phonons. The dependences of two-phonon processes on the energy separation, temperature and polarizability of substrates are discussed. Moreover, we find that the relaxation time of spin–flip can be tuned on a large scale by adjusting the Rashba spin–orbital coupling and internal distance between the graphene and the polar substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Recher, B. Trauzettel, Nanotechnology 21, 302001 (2010)

    Article  Google Scholar 

  2. M. Droth, G. Burkard, Phys. Status Solidi RRL 10, 75 (2016)

    Article  Google Scholar 

  3. W. Han, K.M. McCreary, K. Pi, W.H. Wang, Y. Li, H. Wen, J.R. Chen, R.K. Kawakami, J. Magn. Magn. Mater. 324, 369 (2012)

    Article  ADS  Google Scholar 

  4. D.H. Hernando, F. Guinea, A. Brataas, Phys. Rev. Lett. 103, 146801 (2009)

    Article  ADS  Google Scholar 

  5. P.R. Struck, G. Burkard, Phys. Rev. B 82, 125401 (2010)

    Article  ADS  Google Scholar 

  6. M. Droth, G. Burkard, Phys. Rev. B 84, 155404 (2011)

    Article  ADS  Google Scholar 

  7. M.B. Lundeberg, R. Yang, J. Renard, J.A. Folk, Phys. Rev. Lett. 110, 156601 (2013)

    Article  ADS  Google Scholar 

  8. M. Droth, G. Burkard, Phys. Rev. B 87, 205432 (2013)

    Article  ADS  Google Scholar 

  9. M. Fuchs, J. Schliemann, B. Trauzettel, Phys. Rev. B 88, 245441 (2013)

    Article  ADS  Google Scholar 

  10. M.O. Hachiya, G. Burkard, J.C. Egues, Phys. Rev. B 89, 115427 (2014)

    Article  ADS  Google Scholar 

  11. A. Konar, T. Fang, D. Jena, Phys. Rev. B 82, 115452 (2010)

    Article  ADS  Google Scholar 

  12. I.T. Lin, J.M. Liu, Appl. Phys. Lett. 103, 081606 (2013)

    Article  ADS  Google Scholar 

  13. S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. De Heer, D.-H. Lee, F. Guinea, A.H.C. Neto, A. Lanzara, Nat. Mater. 6, 770 (2007)

    Article  ADS  Google Scholar 

  14. M.O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011)

    Article  ADS  Google Scholar 

  15. J.L. Lado, J.W. Gonzalez, J.F. Rossier, Phys. Rev. B 88, 035448 (2013)

    Article  ADS  Google Scholar 

  16. K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B 85, 115317 (2012)

    Article  ADS  Google Scholar 

  17. K. Kaasbjerg, K.S. Bhargavi, S.S. Kubakaddi, Phys. Rev. B 90, 165436 (2014)

    Article  ADS  Google Scholar 

  18. K. Huang, A. Rhys, Proc. R. Soc. Ser. A 204, 406 (1950)

    ADS  Google Scholar 

  19. K. Huang, Sci. Sin. 24, 27 (1981)

    Google Scholar 

  20. K. Huang, Prog. Phys. 1, 31 (1981). (in chinese)

    Google Scholar 

  21. F. Wendler, A. Knorr, E. Malic, Appl. Phys. Lett. 103, 253117 (2013)

    Article  ADS  Google Scholar 

  22. Z.W. Wang, L. Liu, L. Shi, X.J. Gong, W.P. Li, K. Xu, J. Phys. Soc. Jpn. 82, 094606 (2013)

    Article  ADS  Google Scholar 

  23. Z.W. Wang, Z.Q. Li, S.S. Li, J. Phys, Condens. Matter 26, 395302 (2014)

    Article  Google Scholar 

  24. W.P. Li, J.W. Yin, Y.F. Yu, Z.W. Wang, Solid State Commun. 163, 19 (2013)

    Article  ADS  Google Scholar 

  25. Z.W. Wang, L. Liu, Z.Q. Li, Europhys. Lett. 108, 36005 (2014)

    Article  ADS  Google Scholar 

  26. F. Wendler, M. Mittendorff, J.C. König-Otto, S. Brem, C. Berger, W.A. de Heer, R. Böttger, H. Schneider, M.H.S. Winner, E. Malic, Phys. Rev. Lett. 119, 067405 (2017)

    Article  ADS  Google Scholar 

  27. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Mod. Rev. Phys. 79, 1217 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 11674241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Wu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WP., Yin, JW. & Wang, ZW. Spin–Flip Relaxation Between the Landau Levels in Gapped Graphene. J Low Temp Phys 194, 224–234 (2019). https://doi.org/10.1007/s10909-018-2091-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2091-0

Keywords

Navigation