Skip to main content
Log in

Ground-State Properties of a Dilute Two-Dimensional Bose Gas

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We revisit the problem of the calculation of zero-temperature properties for the dilute two-dimensional Bose gas. By using Popov’s hydrodynamic approach and perturbation theory on the two-loop level, we recover not only the known expansion for the ground-state energy but also calculate for the first time the condensate density and Tan’s contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. A. Posazhennikova, Phys. Rev. Mod. 78, 1111 (2006)

    Article  ADS  Google Scholar 

  2. Z. Hadzibabic, J. Dalibard, Riv. Nuovo Cim. 34, 389 (2011)

    Google Scholar 

  3. Z. Hadzibabic, P. Kruger, M. Cheneau, B. Battelier, J. Dalibard, Nature 441, 1118 (2006)

    Article  ADS  Google Scholar 

  4. P. Cladé, C. Ryu, A. Ramanathan, K. Helmerson, W.D. Phillips, Phys. Rev. Lett. 102, 170401 (2009)

    Article  ADS  Google Scholar 

  5. T. Yefsah, R. Desbuquois, L. Chomaz, K.J. Günter, J. Dalibard, Phys. Rev. Lett. 107, 130401 (2011)

    Article  ADS  Google Scholar 

  6. R. Desbuquois, L. Chomaz, T. Yefsah, J. Leonard, J. Beugnon, C. Weitenberg, J. Dalibard, Nat. Phys. 8, 645 (2012)

    Article  Google Scholar 

  7. M.S. Mashayekhi, J.-S. Bernier, D. Borzov, J.-L. Song, F. Zhou, Phys. Rev. Lett. 110, 145301 (2013)

    Article  ADS  Google Scholar 

  8. L. Salasnich, Phys. Rev. Lett. 118, 130402 (2017)

    Article  ADS  Google Scholar 

  9. S.R. Beane, Eur. Phys. J. D 72, 55 (2018)

    Article  ADS  Google Scholar 

  10. M. Schick, Phys. Rev. A 3, 1067 (1971)

    Article  ADS  Google Scholar 

  11. V.N. Popov, Theor. Math. Phys. 11, 565 (1972)

    Article  Google Scholar 

  12. Yu.E. Lozovik, V.I. Yudson, Physica A 93, 493 (1978)

    Article  ADS  Google Scholar 

  13. E.B. Kolomeisky, J.P. Straley, Phys. Rev. B 46, 11749 (1992)

    Article  ADS  Google Scholar 

  14. A.A. Ovchinnikov, J. Phys. Condens. Matter. 5, 8665 (1993)

    Article  ADS  Google Scholar 

  15. A.Yu. Cherny, A.A. Shanenko, Phys. Rev. E 64, 027105 (2001)

    Article  ADS  Google Scholar 

  16. J.O. Andersen, Eur. Phys. J. B 28, 389 (2002)

    Article  ADS  Google Scholar 

  17. C. Mora, Y. Castin, Phys. Rev. A 67, 053615 (2003)

    Article  ADS  Google Scholar 

  18. C. Mora, Y. Castin, Phys. Rev. Lett. 102, 180404 (2009)

    Article  ADS  Google Scholar 

  19. G.E. Astrakharchik, J. Boronat, I.L. Kurbakov, Yu.E. Lozovik, F. Mazzanti, Phys. Rev. A 81, 013612 (2010)

    Article  ADS  Google Scholar 

  20. S.R. Beane, Phys. Rev. A 82, 063610 (2010)

    Article  ADS  Google Scholar 

  21. L. Pricoupenko, Phys. Rev. A 84, 053602 (2011)

    Article  ADS  Google Scholar 

  22. B. Abdelâali, Phys. Rev. A 86, 043608 (2012)

    Article  Google Scholar 

  23. G.E. Astrakharchik, J. Boronat, J. Casulleras, I.L. Kurbakov, Yu.E. Lozovik, Phys. Rev. A 79, 051602(R) (2009)

    Article  ADS  Google Scholar 

  24. L.-C. Ha, C.-L. Hung, X. Zhang, U. Eismann, S.-K. Tung, C. Chin, Phys. Rev. Lett. 110, 145302 (2013)

    Article  ADS  Google Scholar 

  25. F. Mazzanti, A. Polls, A. Fabrocini, Phys. Rev. A 71, 033615 (2005)

    Article  ADS  Google Scholar 

  26. S. Pilati, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. A 71, 023605 (2005)

    Article  ADS  Google Scholar 

  27. C.C. Chien, J.H. She, F. Cooper, Ann. Phys. 347, 192 (2014)

    Article  ADS  Google Scholar 

  28. A.G. Volosniev, H.-W. Hammer, N.T. Zinner, Phys. Rev. A 92, 023623 (2015)

    Article  ADS  Google Scholar 

  29. P. Konietin, V. Pastukhov, J. Low Temp. Phys. 190, 256 (2018)

    Article  ADS  Google Scholar 

  30. V.N. Popov, Functional Integrals and Collective Excitations (Cambridge University Press, Cambridge, 1987)

    MATH  Google Scholar 

  31. E. Braaten, A. Nieto, Eur. Phys. J. B 11, 143 (1999)

    Article  ADS  Google Scholar 

  32. V. Pastukhov, J. Low Temp. Phys. 186, 148 (2017)

    Article  ADS  Google Scholar 

  33. R. Combescot, F. Alzetto, X. Leyronas, Phys. Rev. A 79, 053640 (2009)

    Article  ADS  Google Scholar 

  34. M. Valiente, N.T. Zinner, K. Mølmer, Phys. Rev. A 84, 063626 (2011)

    Article  ADS  Google Scholar 

  35. S. Tan, Ann. Phys. 323, 2952 (2008)

    Article  ADS  Google Scholar 

  36. E. Braaten, L. Platter, Phys. Rev. Lett. 100, 205301 (2008)

    Article  ADS  Google Scholar 

  37. V. Pastukhov, Ann. Phys. 372, 149 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  38. V. Pastukhov, Phys. Rev. A 95, 023614 (2017)

    Article  ADS  Google Scholar 

  39. N.M. Hugenholtz, D. Pines, Phys. Rev. 116, 489 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  40. A.M.J. Schakel, arXiv:1007.3452

  41. F. Werner, Y. Castin, Phys. Rev. A 86, 053633 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Prof. A. Rovenchak for stimulating discussions. This work was partly supported by Project FF-30F (No. 0116U001539) from the Ministry of Education and Science of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Pastukhov.

Appendices

Appendices

1.1 A

The explicit analytic expressions for the diagrams determining corrections to the partition function logarithm \(-\beta \Delta E\) and presented in Fig. (1) are the following

$$\begin{aligned} a= & {} -\frac{\beta }{8N}\sum _{\mathbf{k},\mathbf{q}}\frac{\varepsilon _k+\varepsilon _q}{\alpha _k\alpha _q}, \end{aligned}$$
(21)
$$\begin{aligned} b= & {} \frac{\beta }{96 N}\sum _{\mathbf{k}+\mathbf{q}+\mathbf{s}=0}\frac{1}{\alpha _k\alpha _q\alpha _s}\frac{(\varepsilon _k+ \varepsilon _q+\varepsilon _s)^2}{E_k+E_q+E_s}, \end{aligned}$$
(22)
$$\begin{aligned} c= & {} \frac{\beta }{32 N}\sum _{\mathbf{k}+\mathbf{q}+\mathbf{s}=0}\left( \frac{\hbar ^2}{m}\mathbf{kq}\right) ^2\frac{\alpha _k\alpha _q}{\alpha _s}\frac{1}{E_k+E_q+E_s}, \end{aligned}$$
(23)
$$\begin{aligned} d= & {} \frac{\beta }{16 N}\sum _{\mathbf{k}+\mathbf{q}+\mathbf{s}=0}\frac{\hbar ^2}{m}{} \mathbf{ks}\frac{\hbar ^2}{m}\mathbf{qs}\frac{\alpha _s}{E_k+E_q+E_s}, \end{aligned}$$
(24)
$$\begin{aligned} e= & {} -\frac{\beta }{16 N}\sum _{\mathbf{k}+\mathbf{q}+\mathbf{s}=0}\frac{\hbar ^2}{m}\mathbf{kq}\frac{1}{\alpha _s}\frac{\varepsilon _k+\varepsilon _q+ \varepsilon _s}{E_k+E_q+E_s}, \end{aligned}$$
(25)

(recall that \(|\mathbf{k}|,|\mathbf{q}|, |\mathbf{s}|<\varLambda \) and \(\alpha _k=E_k/\varepsilon _k\)), where the frequency sums in the diagrams b and c

$$\begin{aligned} \frac{1}{\beta }\sum _{\omega _k,\omega _q}\frac{1}{\omega _k^2+E_k^2} \frac{1}{\omega _q^2+E_q^2}\frac{1}{(\omega _k+\omega _q)^2+E_{s}^2} \rightarrow \frac{\beta }{E_kE_qE_s}\frac{1}{E_k+E_q+E_s}, \end{aligned}$$
(26)

and in e and d

$$\begin{aligned} \frac{1}{\beta }\sum _{\omega _k,\omega _q}\frac{\omega _k}{\omega _k^2+E_k^2} \frac{\omega _q}{\omega _q^2+E_q^2}\frac{1}{(\omega _k+\omega _q)^2+E_{s}^2} \rightarrow -\frac{\beta }{E_s}\frac{1}{E_k+E_q+E_s}, \end{aligned}$$
(27)

were evaluated with the help of residue theorem in the zero-temperature limit.

1.2 B

In this section, we present some details of calculation of integrals determining constants in the ground-state energy (17), condensate depletion (18) and contact (20). We will not stop on the evaluation of variational derivatives \(\left( \frac{\delta E}{\delta \varepsilon _k}\right) _{n,\mathcal {T}}\), \(\left( \frac{\delta E}{\delta \mathcal {T}_k}\right) _{n}\) with the following integration in \(\mathbf{k}\)-space and only give the dimensionless expressions written in terms of triple integrals. After elimination of the explicit dependence on cutoff parameter \(\varLambda \) for \(\text {const}_E\), we obtained

$$\begin{aligned} \text {const}_E= & {} \frac{32}{\pi }\int ^{\infty }_{0}{\text {d}}k\left( 1-\frac{k}{\sqrt{k^2+1}}\right) \int ^{\infty }_{0}{\text {d}}q\left( 1-\frac{q}{\sqrt{q^2+1}} \right) \nonumber \\&\times \int ^{k+q}_{|k-q|}{\text {d}}s s\left\{ 1-\frac{(s^2-k^2-q^2)^2}{4k^2q^2} \right\} ^{-1/2}\left( s^2-\frac{s^3}{\sqrt{s^2+1}}-\frac{1}{2}\right) \nonumber \\&-\frac{32}{3\pi }\int ^{\infty }_{0}\frac{{\text {d}}kk}{\sqrt{k^2+1}} \int ^{\infty }_{0}\frac{dqq}{\sqrt{q^2+1}} \int ^{k+q}_{|k-q|}{\text {d}}s s\left\{ 1-\frac{(s^2-k^2-q^2)^2}{4k^2q^2} \right\} ^{-1/2}\nonumber \\&\times \frac{s}{\sqrt{s^2+1}}\frac{{\tilde{f}}^2(k,q,s)}{k\sqrt{k^2+1} +q\sqrt{q^2+1}+s\sqrt{s^2+1}}, \end{aligned}$$
(28)

here and below

$$\begin{aligned} {\tilde{f}}(k,q,s)=\frac{s^2-k^2-q^2}{2}\left( \sqrt{1+1/k^2}-1\right) \left( \sqrt{1+1/q^2}-1\right) +\text {perm.} \end{aligned}$$

The second-order correction to condensate density is determined by the following constant

$$\begin{aligned} \text {const}_{N_0}= & {} \frac{8}{\pi }\int ^{\infty }_{0}{\text {d}}k\left( 1-\frac{k}{\sqrt{k^2+1}}\right) \int ^{\infty }_{0}dq\left( 1-\frac{q}{\sqrt{q^2+1}} \right) \nonumber \\&\times \int ^{k+q}_{|k-q|}{\text {d}}s s\left\{ 1-\frac{(s^2-k^2-q^2)^2}{4k^2q^2} \right\} ^{-1/2}\left( 1-\frac{s}{\sqrt{s^2+1}}-\frac{s}{2(s^2+1)^{3/2}} \right) \nonumber \\&-\frac{8}{\pi }\int ^{\infty }_{0}{\text {d}}k\left( 1-\frac{k}{\sqrt{k^2+1}}\right) \int ^{\infty }_{0}dq\left( q^2-\frac{q^3}{\sqrt{q^2+1}}-\frac{1}{2}\right) \nonumber \\&\times \int ^{k+q}_{|k-q|}{\text {d}}s\left\{ 1-\frac{(s^2-k^2-q^2)^2}{4k^2q^2} \right\} ^{-1/2}\frac{1}{(s^2+1)^{3/2}}\nonumber \\&-\frac{4}{\pi }\int ^{\infty }_{0}\frac{{\text {d}}kk}{\sqrt{k^2+1}} \int ^{\infty }_{0}\frac{dqq}{\sqrt{q^2+1}} \int ^{k+q}_{|k-q|}{\text {d}}s \left\{ 1-\frac{(s^2-k^2-q^2)^2}{4k^2q^2} \right\} ^{-1/2}\nonumber \\&\times \frac{\partial }{\partial s}\frac{s}{\sqrt{s^2+1}} \frac{{\tilde{f}}^2(k,q,s)}{k\sqrt{k^2+1}+q\sqrt{q^2+1}+s\sqrt{s^2+1}}. \end{aligned}$$
(29)

Finally, \(\text {const}_{\mathcal {C}}\) after some rearrangements is given by

$$\begin{aligned} \text {const}_{\mathcal {C}}= & {} -\frac{16}{\pi }\int ^{\infty }_{0}{\text {d}}k \left( 1-\frac{k}{\sqrt{k^2+1}}\right) \int ^{\infty }_{0}dq\left( 1-\frac{q}{\sqrt{q^2+1}}\right) \nonumber \\&\times \int ^{k+q}_{|k-q|}{\text {d}}s s\left\{ 1-\frac{(s^2-k^2-q^2)^2}{4k^2q^2} \right\} ^{-1/2}\left( 1-\frac{s^3}{(s^2+1)^{3/2}}\right) \nonumber \\&+\frac{32}{\pi }\int ^{\infty }_{0}\frac{{\text {d}}kk}{(k^2+1)^{3/2}} \int ^{\infty }_{0}dq\left( q^2-\frac{q^3}{\sqrt{q^2+1}}-\frac{1}{2} \right) \nonumber \\&\times \int ^{k+q}_{|k-q|}{\text {d}}ss\left\{ 1-\frac{(s^2-k^2-q^2)^2}{4k^2q^2} \right\} ^{-1/2}\left( 1-\frac{s}{\sqrt{s^2+1}}\right) \nonumber \\&-\frac{32}{\pi }\int ^{\infty }_{0}\frac{{\text {d}}kk}{\sqrt{k^2+1}} \int ^{\infty }_{0}\frac{dqq}{\sqrt{q^2+1}} \int ^{k+q}_{|k-q|}{\text {d}}ss\left\{ 1-\frac{(s^2-k^2-q^2)^2}{4k^2q^2} \right\} ^{-1/2}\nonumber \\&\times \frac{s}{\sqrt{s^2+1}}\frac{{\tilde{f}}^2(k,q,s)}{k\sqrt{k^2+1}+q\sqrt{q^2+1}+s\sqrt{s^2+1}}. \end{aligned}$$
(30)

The results of numerical calculations of these integrals are presented in main text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastukhov, V. Ground-State Properties of a Dilute Two-Dimensional Bose Gas. J Low Temp Phys 194, 197–208 (2019). https://doi.org/10.1007/s10909-018-2082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2082-1

Keywords

Navigation