Skip to main content
Log in

Impurity, LO Phonon and Thickness Effects on the Transition of an Electron in a Gaussian Confinement Potential DQD with a Magnetic Field

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We chose the harmonic potential and Gaussian potential to describe the electronic transverse and longitudinal confinement potential in the disk quantum dot (QD) with the hydrogen-like impurity and the thickness effect, respectively, and the eigenvalues and eigenfunctions of the ground and first exited states of the electron are derived by means of the Lee–Low–Pines–Pekar variational method. On this basis, a two-level system was formed, and the electron quantum transition affected by a magnetic field is discussed in terms of the two-level system theory. The results indicate the Gaussian confinement potential reflects the real confinement potential more accurately than the parabolic one; the influence of the thickness of the QD on the electron quantum transition is interesting and significant and cannot be ignored; the electron transition probability \( Q \) is influenced significantly by some physical quantities, such as the strength of the electron–phonon coupling \( \alpha \), the magnetic-field cyclotron frequency \( \omega_{\text{c}} \), the barrier height \( V_{0} \) and confinement range \( L \) of the Gaussian confinement potential. The corresponding results will be helpful to explore the pathway and method to manipulate the transport and optical properties of the QD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X.M. Dou, Y.U. Ying, B.Q. Sun, D.S. Jiang, H.Q. Ni, Z.C. Niu, Chin. Phys. Lett. 29, 104203 (2012)

    Article  ADS  Google Scholar 

  2. H.Y. Wang, D. Su, S. Yang, X.M. Dou, H.J. Zhu, D.S. Jiang, H.Q. Ni, Z.H. Niu, C.L. Zhao, B.Q. Sun, Chin. Phys. Lett. 32, 107804 (2015)

    Article  ADS  Google Scholar 

  3. S. Yang, X.M. Dou, Y. Yu, H.Q. Ni, Z.C. Niu, D.S. Jiang, B.Q. Suu, Chin. Phys. Lett. 32, 077804 (2015)

    Article  ADS  Google Scholar 

  4. Y.Z. Xue, Z.S. Chen, H.Q. Ni, Z.C. Niu, D.S. Jiang, X.M. Dou, B.Q. Sun, Chin. Phys. B 26, 084202 (2017)

    Article  ADS  Google Scholar 

  5. B.X. Li, J. Zheng, F. Chi, Chin. Phys. Lett. 29, 107302 (2012)

    Article  ADS  Google Scholar 

  6. L. Shi, Z.W. Yan, Eur. Phys. J. B 86, 244 (2013)

    Article  ADS  Google Scholar 

  7. B.X. Li, J. Zheng, F. Chi, Chin. Phys. Lett. 31, 057302 (2014)

    Article  ADS  Google Scholar 

  8. Z.Y. Feng, Z.W. Yan, Chin. Phys. B 25, 107804 (2016)

    Article  ADS  Google Scholar 

  9. W.P. Li, J.L. Xiao, J.W. Yin, Y.F. Yu, Z.W. Wang, Chin. Phys. B 19, 047102 (2010)

    Article  ADS  Google Scholar 

  10. Y.J. Chen, J.L. Xiao, J. Low Temp. Phys. 170, 60 (2013)

    Article  ADS  Google Scholar 

  11. X.F. Bai, W. Xin, H.W. Yin, E. Chaolu, Int. J. Theor. Phys. 56, 1673 (2017)

    Article  Google Scholar 

  12. Y. Sun, Z.H. Ding, J.L. Xiao, J. Electron. Mater. 46, 439 (2017)

    Article  ADS  Google Scholar 

  13. J. Gu, J.J. Liang, Acta Phys. Sin. 54, 5335 (2005). (in Chinese)

    Google Scholar 

  14. A.J. Fotue, S.C. Kenfack, M. Tiotsop, N. Issofa, M.P. Tabue Djemmo, A.V. Wirngo, H. Fotsin, L.C. Fai, Eur. Phys. J. Plus. 131, 75 (2016)

    Article  Google Scholar 

  15. L. Jacak, P. Hawrylak, A. Wojs, Quantum Dots (Springer, Berlin, 1998)

    Book  Google Scholar 

  16. J. Adamowski, M. Sobkowicz, B. Szafran, S. Bednarek, Phys. Rev. B 62, 4234 (2000)

    Article  ADS  Google Scholar 

  17. W.F. Xie, Solid State Commun. 127, 401 (2003)

    Article  ADS  Google Scholar 

  18. G.Q. Hai, F.M. Peeters, J.T. Devreese, Phys. Rev. B 47, 10358 (1993)

    Article  ADS  Google Scholar 

  19. S.D. Liang, C.Y. Chen, S.C. Jiang, D.L. Lin, Phys. Rev. B 53, 15459 (1996)

    Article  ADS  Google Scholar 

  20. J.L. Xiao, Int. J. Theor. Phys. 55, 147 (2016)

    Article  Google Scholar 

  21. R. Khordad, S. Goudarzi, H. Bahramiyan, Indian J. Phys. 90, 659 (2016)

    Article  ADS  Google Scholar 

  22. T.D. Lee, F.M. Low, S.D. Pines, Phys. Rev. 90, 297 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  23. L.D. Landau, S.I. Pekar, Zh Eksp, Teor. Fiz. 18, 419 (1948)

    Google Scholar 

  24. S.I. Pekar, M.F. Deigen, Zh Eksp, Teor. Fiz. 18, 481 (1948)

    Google Scholar 

  25. S.I. Pekar, Untersuchungen über die Elektronen-theorie der Kristalle (Akademie Verlag, Berlin, 1954)

    MATH  Google Scholar 

  26. D.J. Griffiths, Introduction to Quantum Mechanics (Pearson Education, Inc., Upper Saddle River, 2005)

    Google Scholar 

  27. E. Chaolu, J.L. Xiao, J. Phys. Soc. Jpn. 76, 044702 (2007)

    Article  ADS  Google Scholar 

  28. S.S. Li, X.J. Kong, J. Phys, Condens. Matter 4, 4815 (1992)

    Article  ADS  Google Scholar 

  29. S.S. Li, J.B. Xia, J. Appl. Phys. 101, 093716 (2007)

    Article  ADS  Google Scholar 

  30. S.S. Li, J.B. Xia, Phys. Lett. A 366, 120 (2007)

    Article  ADS  Google Scholar 

  31. J.J. Huybrechts, Phys. C Solid State Phys. 9, L211 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Research Fund of The State Key Laboratory of Superlattices and Microstructures (No. CHJG200701), the National Nature Science Foundation of Hebei Province, China (Grant No. E2013407119), and the Items of Scientific Research of Hebei Normal University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eerdunchaolu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wuyunqimuge, Xin, W., Wang, GS. et al. Impurity, LO Phonon and Thickness Effects on the Transition of an Electron in a Gaussian Confinement Potential DQD with a Magnetic Field. J Low Temp Phys 193, 48–59 (2018). https://doi.org/10.1007/s10909-018-2026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2026-9

Keywords

Navigation