Advertisement

Hafnium Films and Magnetic Shielding for TIME, A mm-Wavelength Spectrometer Array

  • J. Hunacek
  • J. Bock
  • C. M. Bradford
  • V. Butler
  • T.-C. Chang
  • Y.-T. Cheng
  • A. Cooray
  • A. Crites
  • C. Frez
  • S. Hailey-Dunsheath
  • B. Hoscheit
  • D. W. Kim
  • C.-T. Li
  • D. Marrone
  • L. Moncelsi
  • E. Shirokoff
  • B. Steinbach
  • G. Sun
  • I. Trumper
  • A. Turner
  • B. Uzgil
  • A. Weber
  • M. Zemcov
Article

Abstract

TIME is a mm-wavelength grating spectrometer array that will map fluctuations of the 157.7-\(\mathrm {\upmu m}\) emission line of singly ionized carbon ([CII]) during the epoch of reionization (redshift z \(\sim \) 5–9). Sixty transition-edge sensor (TES) bolometers populate the output arc of each of the 32 spectrometers, for a total of 1920 detectors. Each bolometer consists of gold absorber on a \(\sim \) 3 \(\times \) 3 mm silicon nitride micro-mesh suspended near the corners by 1 \(\times \) 1 \(\times \) 500 \(\upmu \)m silicon nitride legs targeting a photon-noise-dominated NEP \(\sim 1 \times 10^{-17}\,\mathrm {W/\sqrt{Hz}}\). Hafnium films are explored as a lower-\(T_\mathrm{c}\) alternative to Ti (500 mK) for TIME TESs, allowing thicker support legs for improved yield. Hf \(T_\mathrm{c}\) is shown to vary between 250 and 450 mK when varying the resident Ar pressure during deposition. Magnetic shielding designs and simulations are presented for the TIME first-stage SQUIDs. Total axial field suppression is predicted to be \(5 \times 10^7\).

Keywords

Spectrometers Bolometers Transition-edge sensors Hafnium Magnetic shielding 

Notes

Acknowledgements

JH is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469. AC is supported by the National Science Foundation Astronomy and Astrophysics Postdoctoral Fellowship under Grant No. 1602677.

References

  1. 1.
    J. Hunacek, J. Bock, C.M. Bradford et al., Proc. SPIE 9914, 99140L (2016)CrossRefGoogle Scholar
  2. 2.
    A.T. Crites, J.J. Bock, C.M. Bradford, T.C. Chang, A.R. Cooray, L. Duband, Y. Gong, S. Hailey-Dunsheath, J. Hunacek, P.M. Koch, C.T. Li, R.C. O’Brient, T. Prouve, E. Shirokoff, M.B. Silva, Z. Staniszewski, B. Uzgil, M. Zemcov, The time-pilot intensity mapping experiment, in [millimeter, submillimeter, and far-infrared detectors and instrumentation for astronomy VII]. Proc. SPIE 9153, 91531W (2014)ADSCrossRefGoogle Scholar
  3. 3.
    J. Hunacek, J. Bock, C.M. Bradford, B. Bumble, T.-C. Chang, Y.-T. Cheng, A. Cooray, A. Crites, S. Hailey-Dunsheath, Y. Gong, M. Kenyon, P. Koch, C.-T. Li, R. O’Brient, E. Shirokoff, C. Shiu, Z. Staniszewski, B. Uzgil, M. Zemcov, Design and fabrication of tes detector modules for the time-pilot [cii] intensity mapping experiment. J. Low Temp. Phys. 184(3), 733–738 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    C.-T. Li, T. Wei, J.-C. Cheng, C. Shiu, A.I. Crites, C.M. Bradford, Development of a millimeter wave grating spectrometer for TIME Pilot, in The 27th International Symposium on Space Terahertz Technology (2016)Google Scholar
  5. 5.
    Y. Gong, A. Cooray, M. Silva, M.G. Santos, J. Bock, C.M. Bradford, M. Zemcov, Intensity mapping of the [CII] fine structure line during the epoch of reionization. Astrophys. J. 745, 49 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    M. Silva, M.G. Santos, A. Cooray, Y. Gong, Prospects for detecting CII emission during the epoch of reionization. Astrophys. J. 806, 209 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    C.M. Bradford, B.J. Naylor, J. Zmuidzinas, J.J. Bock, J. Gromke, H. Nguyen, M. Dragovan, M. Yun, L. Earle, J. Glenn, H. Matsuhara, P.A.R. Ade, L. Duband, WaFIRS: a waveguide far-IR spectrometer: enabling spectroscopy of high-z galaxies in the far-IR and submillimeter, in [IR Space Telescopes and Instruments], Mather, J. C., ed. Proc. SPIE 4850, 1137–1148 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    C.M. Bradford, J.E. Aguirre, R. Aikin, J.J. Bock, L. Earle, J. Glenn, H. Inami, P.R. Maloney, H. Matsuhara, B.J. Naylor, H.T. Nguyen, J. Zmuidzinas, The warm molecular gas around the cloverleaf quasar. Astrophys. J. 705, 112–122 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    S. Sah, G. Myneni, & J. Atulasimha (2015). arXiv:1501.07312
  10. 10.
    BICEP2 Collaboration, P.A.R. Ade, R.W. Aikin et al., Astrophys. J. 792, 62 (2014)Google Scholar
  11. 11.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • J. Hunacek
    • 1
  • J. Bock
    • 1
    • 2
  • C. M. Bradford
    • 1
    • 2
  • V. Butler
    • 6
  • T.-C. Chang
    • 2
  • Y.-T. Cheng
    • 1
  • A. Cooray
    • 4
  • A. Crites
    • 1
  • C. Frez
    • 2
  • S. Hailey-Dunsheath
    • 1
  • B. Hoscheit
    • 1
  • D. W. Kim
    • 5
  • C.-T. Li
    • 3
  • D. Marrone
    • 5
  • L. Moncelsi
    • 1
  • E. Shirokoff
    • 7
  • B. Steinbach
    • 1
  • G. Sun
    • 1
  • I. Trumper
    • 5
  • A. Turner
    • 2
  • B. Uzgil
    • 8
  • A. Weber
    • 2
  • M. Zemcov
    • 7
  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.Jet Propulsion LaboratoryPasadenaUSA
  3. 3.Academia Sinica Institute of Astronomy and AstrophysicsTaipeiTaiwan
  4. 4.University of California IrvineIrvineUSA
  5. 5.University of ArizonaTucsonUSA
  6. 6.Rochester Institute of TechnologyRochesterUSA
  7. 7.University of ChicagoChicagoUSA
  8. 8.Max Planck Institute for AstronomyHeidelbergGermany

Personalised recommendations