Design and Fabrication of the Second-Generation KID-Based Light Detectors of CALDER

  • I. Colantoni
  • L. Cardani
  • N. Casali
  • A. Cruciani
  • F. Bellini
  • M. G. Castellano
  • C. Cosmelli
  • A. D’Addabbo
  • S. Di Domizio
  • M. Martinez
  • C. Tomei
  • M. Vignati
Article
  • 10 Downloads

Abstract

The goal of the cryogenic wide-area light detectors with excellent resolution project is the development of light detectors with large active area and noise energy resolution smaller than 20 eV RMS using phonon-mediated kinetic inductance detectors (KIDs). The detectors are developed to improve the background suppression in large-mass bolometric experiments such as CUORE, via the double readout of the light and the heat released by particles interacting in the bolometers. In this work we present the fabrication process, starting from the silicon wafer arriving to the single chip. In the first part of the project, we designed and fabricated KID detectors using aluminum. Detectors are designed by means of state-of-the-art software for electromagnetic analysis (SONNET). The Al thin films (40 nm) are evaporated on high-quality, high-resistivity (> 10 kΩ cm) Si(100) substrates using an electron beam evaporator in a HV chamber. Detectors are patterned in direct-write mode, using electron beam lithography (EBL), positive tone resist poly-methyl methacrylate and lift-off process. Finally, the chip is diced into 20 × 20 mm2 chips and assembled in a holder OFHC (oxygen-free high conductivity) copper using PTFE support. To increase the energy resolution of our detectors, we are changing the superconductor to sub-stoichiometric TiN (TiN x ) deposited by means of DC magnetron sputtering. We are optimizing its deposition by means of DC magnetron reactive sputtering. For this kind of material, the fabrication process is subtractive and consists of EBL patterning through negative tone resist AR-N 7700 and deep reactive ion etching. Critical temperature of TiN x samples was measured in a dedicated cryostat.

Keywords

Kinetic inductance detectors Titanium nitride Reactive sputtering 

Notes

Acknowledgements

This work was supported by the European Research Council (FP7/2007–2013) under contract CALDER No. 335359 and by the Italian Ministry of Research under the FIRB contract no. RBFR1269SL. The authors thank the personnel of INFN Sezione di Roma for the technical support, in particular M. Iannone, F. Pellegrino, L. Recchia and D. Ruggeri. Ivan Colantoni acknowledges the Science Foundation Ireland (SFI) Grant No. 15/IA/2880 for supporting his actual contract.

References

  1. 1.
    G. Angloher et al., Eur. Phys. J. C 72, 1971 (2012).  https://doi.org/10.1140/epjc/s10052-012-1971-8 ADSCrossRefGoogle Scholar
  2. 2.
    D. Artusa et al., Adv. High Energy Phys. 2015, 879871 (2015).  https://doi.org/10.1155/2015/879871 CrossRefGoogle Scholar
  3. 3.
    D.R. Artusa et al., Eur. Phys. J. C 76, 7–364 (2016).  https://doi.org/10.1140/epjc/s10052-016-4223-5 ADSCrossRefGoogle Scholar
  4. 4.
    N. Casali et al., Eur. Phys. J. C 75(1), 12 (2015).  https://doi.org/10.1140/epjc/s10052-014-3225-4 ADSCrossRefGoogle Scholar
  5. 5.
    L. Cardani et al., Appl. Phys. Lett. 107, 093508 (2015).  https://doi.org/10.1063/1.4929977 ADSCrossRefGoogle Scholar
  6. 6.
    L. Cardani et al., Appl. Phys. Lett. 110, 033504 (2017).  https://doi.org/10.1063/1.4974082 ADSCrossRefGoogle Scholar
  7. 7.
    L. Cardani et al., arXiv:1801.08403v1
  8. 8.
    P. Diener et al., J. Low Temp. Phys. 167, 305–310 (2012).  https://doi.org/10.1007/s10909-012-0484-z ADSCrossRefGoogle Scholar
  9. 9.
    C.M. McKenney et al., Proc. SPIE 8452, 84523I-1 (2013).  https://doi.org/10.1117/12.925759 Google Scholar
  10. 10.
    J. Hubmayr et al., Appl. Phys. Lett. 106, 073505 (2015).  https://doi.org/10.1063/1.4913418 ADSCrossRefGoogle Scholar
  11. 11.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. Colantoni
    • 1
    • 2
  • L. Cardani
    • 3
  • N. Casali
    • 3
  • A. Cruciani
    • 3
  • F. Bellini
    • 3
    • 4
  • M. G. Castellano
    • 1
  • C. Cosmelli
    • 3
    • 4
  • A. D’Addabbo
    • 5
  • S. Di Domizio
    • 6
    • 7
  • M. Martinez
    • 4
  • C. Tomei
    • 3
  • M. Vignati
    • 3
  1. 1.Istituto di Fotonica e Nanotecnologie CNRRomeItaly
  2. 2.Dublin Institute for Advanced StudiesSchool of Cosmic Physics Astronomy and Astrophysics SectionDublinIreland
  3. 3.INFN - Sezione di RomaRomeItaly
  4. 4.Dipartimento di FisicaSapienza Università di RomaRomeItaly
  5. 5.INFN Laboratori Nazionali del Gran SassoAssergiItaly
  6. 6.Dipartimento di FisicaUniversità degli Studi di GenovaGenoaItaly
  7. 7.INFN - Sezione di GenovaGenoaItaly

Personalised recommendations