Advertisement

Crosstalk in an FDM Laboratory Setup and the Athena X-IFU End-to-End Simulator

  • R. den Hartog
  • C. Kirsch
  • C. de Vries
  • H. Akamatsu
  • T. Dauser
  • P. Peille
  • E. Cucchetti
  • B. Jackson
  • S. Bandler
  • S. Smith
  • J. Wilms
Article

Abstract

The impact of various crosstalk mechanisms on the performance of the Athena X-IFU instrument has been assessed with detailed end-to-end simulations. For the crosstalk in the electrical circuit, a detailed model has been developed. In this contribution, we test this model against measurements made with an FDM laboratory setup and discuss the assumption of deterministic crosstalk in the context of the weak link effect in the detectors. We conclude that crosstalk levels predicted by the model are conservative with respect to the observed levels.

Keywords

Athena X-IFU TES FDM Crosstalk 

Notes

Acknowledgements

The authors acknowledge the support of K. Ravensberg and M. Schoemans with the cryogenic measurements. This work is financially supported by the Netherlands Organization for Scientific Research (NWO) and has been partially funded by the Bundesministerium für Wirtschaft und Technologie und der Deutsches Zentrum für Luft- und Raumfahrt Grant 50 QR 1402.

References

  1. 1.
    D. Barret et al., Proc. SPIE 9905, 99052F (2016).  https://doi.org/10.1117/12.2232432 CrossRefGoogle Scholar
  2. 2.
    B.D. Jackson et al., Proc. SPIE 9905, 99052I (2016).  https://doi.org/10.1117/12.2232544 CrossRefGoogle Scholar
  3. 3.
    J. van der Kuur et al., Proc. SPIE 9905, 99055R (2016).  https://doi.org/10.1117/12.2232830 CrossRefGoogle Scholar
  4. 4.
    J. Wilms et al., Proc. SPIE 9144, 91445X (2014).  https://doi.org/10.1117/12.2056347 CrossRefGoogle Scholar
  5. 5.
    N. Iyomoto et al., IEEE TASC 19, 557 (2009).  https://doi.org/10.1109/TASC.2009.2017704 Google Scholar
  6. 6.
    M.A. Dobbs et al., Rev. Sci. Instrum. 83, 073113 (2012).  https://doi.org/10.1063/1.4737629 ADSCrossRefGoogle Scholar
  7. 7.
    R. den Hartog et al., Proc. SPIE 9905, 99055T (2016).  https://doi.org/10.1117/12.2232098 CrossRefGoogle Scholar
  8. 8.
    L. Gottardi, J. van der Kuur, priv. comm. (2017)Google Scholar
  9. 9.
    J. Wilms et al., Proc. SPIE 9905, 990564 (2016).  https://doi.org/10.1117/12.2234435 CrossRefGoogle Scholar
  10. 10.
    P. Peille et al., J. Low Temp. Phys. This Special Issue (2017)Google Scholar
  11. 11.
    H. Akamatsu et al., Proc. SPIE 9905, 99055S (2016).  https://doi.org/10.1117/12.2232805 CrossRefGoogle Scholar
  12. 12.
    M.P. Bruijn et al., J. Low Temp. Phys. 176, 421 (2014).  https://doi.org/10.1007/s10909-013-1003-6 ADSGoogle Scholar
  13. 13.
    R. Hijmering et al., Proc. SPIE 9914, 99141C (2016).  https://doi.org/10.1117/12.2231714 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SRON Netherlands Institute for Space ResearchUtrechtNetherlands
  2. 2.Remeis Observatory, Bamberg and ECAPErlangen Centre for Astroparticle PhysicsErlangenGermany
  3. 3.CNES, Centre National des Etudes SpatialeToulouseFrance
  4. 4.CNRS, IRAP Institut de Recherche en Astrophysique et PlanétologieToulouseFrance
  5. 5.SRON Netherlands Institute for Space ResearchGroningenNetherlands
  6. 6.NASA GSFC, Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations