Advertisement

A Cryogenic Detector Characterization Facility in the Shallow Underground Laboratory at the Technical University of Munich

  • A. Langenkämper
  • X. Defay
  • N. Ferreiro Iachellini
  • A. Kinast
  • J.-C. Lanfranchi
  • E. Lindner
  • M. Mancuso
  • E. Mondragón
  • A. Münster
  • T. Ortmann
  • W. Potzel
  • S. Schönert
  • R. Strauss
  • A. Ulrich
  • S. Wawoczny
  • M. Willers
Article

Abstract

The Physics Department of the Technical University of Munich operates a shallow underground detector laboratory in Garching, Germany. It provides \(\sim 160\,{\mathrm{m}^2}\) of laboratory space which is shielded from cosmic radiation by \(\sim 6\,\mathrm{m}\) of gravel and soil, corresponding to a shielding of \(\sim 15\,{\mathrm{m.w.e.}}\). The laboratory also houses a cleanroom equipped with work- and wetbenches, a chemical fumehood as well as a spin-coater and a mask-aligner for photolithographic processing of semiconductor detectors. Furthermore, the shallow underground laboratory runs two high-purity germanium detector screening stations, a liquid argon cryostat and a \(^3\)He–\(^4\)He dilution refrigerator with a base temperature of \(\le 12-14\,\mathrm{mK}\). The infrastructure provided by the shallow laboratory is particularly relevant for the characterization of \(\hbox {CaWO}_4\) target crystals for the CRESST-III experiment, detector fabrication and assembly for rare event searches. Future applications of the laboratory include detector development in the framework of coherent neutrino nucleus scattering experiments (\(\nu \)-cleus) and studying its potential as a site to search for MeV-scale dark matter with gram-scale cryogenic detectors.

Keywords

Shallow underground laboratory Low-background techniques Detector characterization Cryogenic detectors 

Notes

Acknowledgements

This work is supported by the DFG collaborative research center SFB1256, the DFG cluster of excellence “Origin and Structure of the Universe,” the Federal Ministry of Education and Research (Germany) and the Maier-Leibnitz Laboratory, Garching, Germany.

References

  1. 1.
    R. Burkhardt, in Abschätzung der Abschirmwirkung des Garchinger Untergrundlabors (UGL) durch die Messung des Myonen-Flusses inner- und ausserhalb des UGLs, Bachelor thesis, Technische Universität München, 2012Google Scholar
  2. 2.
    J.-C. Lanfranchi, in Development of a new composite cryogenic detection concept for a radiochemical solar neutrino experiment, Ph.D. thesis, Technische Universität München, 2005Google Scholar
  3. 3.
    M. Agostini et al., Background-free search for neutrinoless double-\(\beta \) decay of \(^{76}\)Ge with GERDA. Nature 544, 4752 (2017).  https://doi.org/10.1038/nature21717 CrossRefGoogle Scholar
  4. 4.
    N. Abgrall et al., The large enriched germanium experiment for neutrinoless double beta decay (LEGEND). AIP Conf. Proc. 1894, 020027 (2017).  https://doi.org/10.1063/1.5007652 CrossRefGoogle Scholar
  5. 5.
    G. Angloher et al., Results on light dark matter particles with a low-threshold CRESST-II detector. Eur. Phys. J. C76(1), 25 (2016).  https://doi.org/10.1140/epjc/s10052-016-3877-3 ADSCrossRefGoogle Scholar
  6. 6.
    G. Angloher et al., Commissioning run of the CRESST-II dark matter search. Astropart. Phys. 31(4), 270–276 (2009).  https://doi.org/10.1016/j.astropartphys.2009.02.007 ADSCrossRefGoogle Scholar
  7. 7.
    R. Strauss et al., The CRESST-III low-mass WIMP detector. J. Phys. Conf. Ser. 718(4), 42–48 (2016).  https://doi.org/10.1088/1742-6596/718/4/042048 Google Scholar
  8. 8.
    M. Willers, in Background suppression in TeO \(_2\) bolometers with Neganov–Luke amplified cryogenic light detectors, Ph.D. thesis, Technische Universität München, 2015Google Scholar
  9. 9.
    C. Isaila et al., Low-temperature light detectors: Neganov–Luke amplification and calibration. Phys. Lett. B 716, 160–164 (2012).  https://doi.org/10.1016/j.physletb.2012.08.003 ADSCrossRefGoogle Scholar
  10. 10.
    X. Defay et al., Cryogenic silicon detectors with implanted contacts for the detection of visible photons using the Neganov–Trofimov–Luke effect. J. Low Temp. Phys. 183, 1–6 (2016).  https://doi.org/10.1007/s10909-016-1534-8 CrossRefGoogle Scholar
  11. 11.
    Homepage of Magnicon GmbH. http://www.magnicon.com/. Accessed Aug 2017
  12. 12.
    A. Erb et al., Growth of high-purity scintillating CaWO \(_4\) single crystals for the low-temperature direct dark matter search experiment CRESST- II and EURECA. CrystEngComm (2013).  https://doi.org/10.1039/c2ce26554k Google Scholar
  13. 13.
    A. Münster, High-purity CaWO\(_{4}\) single crystals for direct dark matter search with the CRESST experiment. Technische Universität München (2017)Google Scholar
  14. 14.
    G. Angloher et al., Probing low WIMP masses with the next generation of CRESST detector (2015). arXiv: 1503.08065. Accessed Aug 2017
  15. 15.
    A. Münster et al., Radiopurity of CaWO\(_4\) crystals for direct dark matter search with CRESST and EURECA. J. Cosmol. Astropart. Phys. (2014).  https://doi.org/10.1088/1475-7516/2014/05/018 Google Scholar
  16. 16.
    R. Strauss et al., The \(\nu \) -cleus experiment: a gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering. Eur. Phys. J. C (2017).  https://doi.org/10.1140/epjc/s10052-017-5068-2 Google Scholar
  17. 17.
    G. Angloher et al., Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground. Eur. Phys. J. C 77(637), 77 (2017).  https://doi.org/10.1140/epjc/s10052-017-5223-9 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Langenkämper
    • 1
  • X. Defay
    • 1
  • N. Ferreiro Iachellini
    • 2
  • A. Kinast
    • 1
  • J.-C. Lanfranchi
    • 1
  • E. Lindner
    • 1
  • M. Mancuso
    • 2
  • E. Mondragón
    • 1
  • A. Münster
    • 1
  • T. Ortmann
    • 1
  • W. Potzel
    • 1
  • S. Schönert
    • 1
  • R. Strauss
    • 2
  • A. Ulrich
    • 1
  • S. Wawoczny
    • 1
  • M. Willers
    • 1
  1. 1.Physikdepartment E15 and Excellence Cluster Origin and Structure of the UniverseTechnical University of MunichGarchingGermany
  2. 2.Max-Planck-Institut für PhysikMunichGermany

Personalised recommendations