Effects of Normal Metal Features on Superconducting Transition-Edge Sensors

  • N. A. Wakeham
  • J. S. Adams
  • S. R. Bandler
  • J. A. Chervenak
  • A. M. Datesman
  • M. E. Eckart
  • F. M. Finkbeiner
  • R. L. Kelley
  • C. A. Kilbourne
  • A. R. Miniussi
  • F. S. Porter
  • J. E. Sadleir
  • K. Sakai
  • S. J. Smith
  • E. J. Wassell
  • W. Yoon
Article
  • 24 Downloads

Abstract

In transition-edge sensors (TESs), the addition of normal metal stripes on top of the superconducting bilayer, perpendicular to the current direction, is known to globally alter the sensitivity of the resistance R to changes in temperature T and current I. Here, we describe measurements of the dependence of the TES current on magnetic field B, bath temperature and voltage bias in devices with various numbers of stripes. We show that the normal metal features have a profound effect on the appearance of localized regions of very large \((T/R)\,\hbox {d}R/\hbox {d}T\). We associate this with changes in the current distribution and corresponding changes in the oscillatory pattern of I(B). \(140~\upmu \hbox {m}\) TESs with no stripes are found to have a relatively smooth resistive transition and sufficiently low noise that the measured energy resolution is 1.6 eV for X-rays of 1.5 keV. The predicted energy resolution at 6 keV is better than 2 eV, once the heat capacity is optimized for these higher energies.

Keywords

Transition-edge sensor X-IFU X-ray microcalorimeter 

References

  1. 1.
    L. Ravera et al., Proc. SPIE 9144, 13 (2014).  https://doi.org/10.1117/12.2055884 Google Scholar
  2. 2.
    S. Smith et al., J. Appl. Phys. 114, 074513 (2013).  https://doi.org/10.1063/1.4818917 ADSCrossRefGoogle Scholar
  3. 3.
    Athena Calibration Requirements Issue 0.3. Feb 8, 2017. Document: ESA-ATH-SP-2016-001Google Scholar
  4. 4.
    J. Ullom et al., Appl. Phys. Lett. 84, 4206 (2004).  https://doi.org/10.1063/1.1753058 ADSCrossRefGoogle Scholar
  5. 5.
    M. Lindeman et al., Nucl. Instr. Meth. Phys. Res. A 520, 348 (2004).  https://doi.org/10.1016/j.nima.2003.11.264 ADSCrossRefGoogle Scholar
  6. 6.
    J. Sadleir et al., Phys. Rev. B 84, 184502 (2011).  https://doi.org/10.1103/PhysRevB.84.184502 ADSCrossRefGoogle Scholar
  7. 7.
    N. Iyomoto et al., J. Low Temp. Phys. 151, 406 (2008).  https://doi.org/10.1007/s10909-007-9668-3 ADSCrossRefGoogle Scholar
  8. 8.
    K.D. Irwin, G.C. Hilton, Cryogenic Particle Detection, vol. 99 (Springer, Berlin, 2005). Ch. 3Google Scholar
  9. 9.
    J. Sadleir et al., Phys. Rev. Lett. 104, 047003 (2010).  https://doi.org/10.1103/PhysRevLett.104.047003 ADSCrossRefGoogle Scholar
  10. 10.
    J. Ullom, D. Bennett, Supercond. Sci. Technol. 28, 084003 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)Google Scholar
  12. 12.
    J. E. Sadleir, Ph.D. Thesis, University of Illinois (2010)Google Scholar
  13. 13.
    N. Iyomoto et al., Appl. Phys. Lett. 92, 013508 (2008).  https://doi.org/10.1063/1.2830665 ADSCrossRefGoogle Scholar
  14. 14.
    N. Jethava et al., AIP Conf. Proc. 1185, 31 (2009).  https://doi.org/10.1063/1.3292343 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. A. Wakeham
    • 1
    • 2
  • J. S. Adams
    • 1
    • 3
  • S. R. Bandler
    • 1
  • J. A. Chervenak
    • 1
  • A. M. Datesman
    • 1
    • 4
  • M. E. Eckart
    • 1
  • F. M. Finkbeiner
    • 1
    • 5
  • R. L. Kelley
    • 1
  • C. A. Kilbourne
    • 1
  • A. R. Miniussi
    • 1
    • 3
  • F. S. Porter
    • 1
  • J. E. Sadleir
    • 1
  • K. Sakai
    • 1
    • 3
  • S. J. Smith
    • 1
    • 3
  • E. J. Wassell
    • 1
    • 4
  • W. Yoon
    • 1
    • 2
  1. 1.Goddard Space Flight Center (GSFC), NASAGreenbeltUSA
  2. 2.NPP - Universities Space Research AssociationColumbiaUSA
  3. 3.CRESST II - University of Maryland Baltimore CountyBaltimoreUSA
  4. 4.SGTGreenbeltUSA
  5. 5.Wyle Information SystemsLexington ParkUSA

Personalised recommendations