Effect of Magnetic Inclusions on the Effective Magnetostriction of Bulk Superconductors

Article
  • 11 Downloads

Abstract

A simple model is presented based on the Kim–Anderson model to further investigate the dependence of the effective magnetostriction of magnetic inclusion-superconducting matrix system on both the elastic and magnetic parameters including the elastic modulus, permeability, and volume fraction. The effect of the permeability on the magnetostriction is also obtained by implementing the continuity conditions of displacement and strain at the interface between the inclusion and the matrix through the magnetostriction loop. The results indicate that a stiffer inclusion can decrease the effective magnetostriction no matter whether the inclusion is magnetic or not and a larger effective magnetostriction can be obtained by choosing the matrix with a higher permeability, which gives an explanation about why the composite made from a matrix with a high permeability but a negligibly small magnetostriction yields unexpectedly low magnetostriction. Of particular interest is that in a certain range the effective magnetostriction of composites can be enhanced until it is saturated by increasing the permeability of matrix.

Keywords

Magnetic inclusions Effective magnetostriction Permeability Elastic modulus Kim–Anderson model 

Notes

Acknowledgements

This research was supported by the fund of Natural Science Foundation of China (No. 11662009), Natural Science Foundation of Gansu Province (No. 17JR5RA129).

References

  1. 1.
    Y. Tsui, R. Mahmoud, E. Surrey, D.P. Hampshire, IEEE Trans. Appl. Supercond. 26, 6900204 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Cavdar, N. Kol, H. Koralay, H. Koralay, O. Ozturk, E. Asikuzun, A.T. Tasci, Cryogenics 73, 1 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    S.S. Ghosh, Y. Xin, Z.Q. Mao, E. Manousakis, Cond. Mat. Mtrl. Sci. 1611, 07130 (2016)Google Scholar
  4. 4.
    W.J. Feng, P. Ma, Q.H. Li, J.X. Liu, J. Supercond. Nov. Magn. 26, 539 (2013)CrossRefGoogle Scholar
  5. 5.
    H. Ikuta, N. Hirota, Y. Nakayama, K. Kishio, K. Kitazawa, Phys. Rev. Lett. 70, 2166 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    A. Nabiałek, H. Szymczak, V.A. Sirenko, A.I. D’yachenko, J. Appl. Phys. 84, 3770 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    T.H. Johansen, Phys. Rev. B 59, 11187 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    T.H. Johansen, Phys. Rev. B 60, 9690 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    T.H. Johansen, Supercond. Sci. Technol. 13, R121 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    W.J. Feng, X. Han, P. Ma, J. Appl. Phys. 110, 063917 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    H.D. Yong, Z. Jing, Y.H. Zhou, Physica C 483, 51 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    X.Y. Li, L. Jiang, H. Wu, Z.W. Gao, Physica C 534, 50 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    H.D. Yong, Y.H. Zhou, J. Appl. Phys. 104, 043907 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    A.H. Aly, A. Mehaney, S.A. El-Naggar, J. Supercond. Nov. Magn. 11, 1 (2017)Google Scholar
  15. 15.
    Y. Fasano, J.A. Herbsommer, F. DeLaCruz, F. Pardo, P.L. Gammel, E. Bucher, D.J. Bishop, Phys. Rev. B 60, 11187 (1999)CrossRefGoogle Scholar
  16. 16.
    M.G. Blamire, R.B. Dinner, S.C. Wimbush, J.L. MacManus-Driscoll, Supercond. Sci. Technol. 22, 025017 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    C.G. Huang, H.D. Yong, Y.H. Zhou, J. Appl. Phys. 114, 033913 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    C.G. Huang, Y.H. Zhou, J. Appl. Phys. 115, 033904 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    C.G. Huang, J. Liu, J. Appl. Phys. 121, 023905 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Y.F. Zhao, B.C. Pan, J. Low Temp. Phys. 190, 213 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Y.I. Jiao, L. Xiao, M.H. Zheng, Q.Z. Yan, K.X. Xu, Conf. Ser. 234, 012020 (2010)CrossRefGoogle Scholar
  22. 22.
    Z.W. Gao, Z.Y. Zheng, IEEE Trans. Appl. Supercond. 26, 8400605 (2016)Google Scholar
  23. 23.
    F. Xue, Z.X. Zhang, J. Zeng, X.F. Gou, J. Supercond. Nov. Magn. 29, 2023 (2016)CrossRefGoogle Scholar
  24. 24.
    L. Ceniga, P. Diko, Physica C 467, 179 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Y.P. Wan, Z. Zhong, D.N. Fang, J. Appl. Phys. 95, 3099 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Koziol, J.J.M. Franse, P.F. de Châtel, A.A. Menovsky, Phys. Rev. B 50, 15978 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    Z. Koziol, R.A. Dunlap, J. Appl. Phys. 79, 4679 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhouChina
  2. 2.School of ScienceLanzhou University of TechnologyLanzhouChina

Personalised recommendations