Investigation of Supercurrent in the Quantum Hall Regime in Graphene Josephson Junctions

  • Anne W. Draelos
  • Ming Tso Wei
  • Andrew Seredinski
  • Chung Ting Ke
  • Yash Mehta
  • Russell Chamberlain
  • Kenji Watanabe
  • Takashi Taniguchi
  • Michihisa Yamamoto
  • Seigo Tarucha
  • Ivan V. Borzenets
  • François Amet
  • Gleb Finkelstein


In this study, we examine multiple encapsulated graphene Josephson junctions to determine which mechanisms may be responsible for the supercurrent observed in the quantum Hall (QH) regime. Rectangular junctions with various widths and lengths were studied to identify which parameters affect the occurrence of QH supercurrent. We also studied additional samples where the graphene region is extended beyond the contacts on one side, making that edge of the mesa significantly longer than the opposite edge. This is done in order to distinguish two potential mechanisms: (a) supercurrents independently flowing along both non-contacted edges of graphene mesa, and (b) opposite sides of the mesa being coupled by hybrid electron–hole modes flowing along the superconductor/graphene boundary. The supercurrent appears suppressed in extended junctions, suggesting the latter mechanism.


Graphene Supercurrent Josephson junction Quantum Hall 



Low-temperature electronic measurements performed by A.W.D., M.T.W., C.T.K., and G.F. were supported by ARO Award W911NF-16-1-0122. Sample fabrication and characterization conducted by M.T.W., A.S., C.T.K., and G.F. were supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy, under Award DE-SC0002765. F.A. acknowledges the ARO under Award W911NF-16-1-0132. I.V.B. and M.Y. acknowledge the Canon foundation. This work was performed in part at the Duke University Shared Materials Instrumentation Facility (SMIF), a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), which is supported by the National Science Foundation (Grant ECCS-1542015) as part of the National Nanotechnology Coordinated Infrastructure (NNCI). M. Y. acknowledges support from JSPS KAKENHI Grant No. JP25107003. K. W. and T. T. acknowledge support from JSPS KAKENHI Grant No. JP15K21722 and the Elemental Strategy Initiative conducted by the MEXT, Japan. T. T. acknowledges support from JSPS Grant-in-Aid for Scientific Research A (No. 26248061) and JSPS Innovative Areas ‘Nano Informatics’ (No. 25106006). M. Y. and S. T. acknowledge support by Grant-in-Aid for Scientific Research S (No. 26220710), and Grant-in-Aid for Scientific Research A (Nos. 26247050, 16H02204).


  1. 1.
    V.E. Calado, S. Goswami, G. Nanda, M. Diez, A.R. Akhmerov, K. Watanabe, T. Taniguchi, T.M. Klapwijk, L.M.K. Vandersypen, Nat. Nanotechnol. 10, 761 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    M. Ben Shalom, M.J. Zhu, V.I. Fal’ko, A. Mishchenko, A.V. Kretinin, K.S. Novoselov, C.R. Woods, K. Watanabe, T. Taniguchi, A.K. Geim, J.R. Prance, Nat. Phys. 12, 318 (2016)CrossRefGoogle Scholar
  3. 3.
    M.T. Allen, O. Shtanko, I.C. Fulga, J.I.J. Wang, D. Nurgaliev, K. Watanabe, T. Taniguchi, A.R. Akhmerov, P. Jarillo-Herrero, L.S. Levitov, A. Yacoby, Nat. Phys. 12, 128 (2016)CrossRefGoogle Scholar
  4. 4.
    G.-H. Lee, K.-F. Huang, D.K. Efetov, D.S. Wei, S. Hart, T. Taniguchi, K. Watanabe, A. Yacoby, P. Kim, Nat. Phys. 13, 693 (2017)CrossRefGoogle Scholar
  5. 5.
    F. Amet, C.-T. Ke, I.V. Borzenets, J. Wang, K. Watanabe, T. Taniguchi, R.S. Deacon, M. Yamamoto, Y.V. Bomze, S. Tarucha, G. Finkelstein, Science 352, 966–969 (2016)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    G.-H. Park, M. Kim, K. Watanabe, T. Taniguchi, H.-J. Lee, Sci. Rep. 7, 10953 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Y.V. Nazarov, Y.M. Blanter, Quantum Transport: Introduction to Nanoscience (Cambridge University Press, Cambridge, 2009)CrossRefGoogle Scholar
  8. 8.
    S. Hart, H. Ren, T. Wagner, P. Leubner, M. Mühlbauer, C. Brüne, H. Buhmann, L.W. Molenkamp, A. Yacoby, Nat. Phys. 10, 638–643 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Ma, A.Y. Zyuzin, Europhys. Lett. 21, 941–945 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    J.A.M. van Ostaay, A.R. Akhermov, C.W.J. Beenakker, Phys. Rev. B 83, 195441 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    M. Stone, Y. Lin, Phys. Rev. B 83, 224501 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    H. Hoppe, U. Zülicke, G. Schön, Phys. Rev. Lett. 84, 1804 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, C.R. Dean, Science 342, 614–7 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    C.T. Ke, I.V. Borzenets, A.W. Draelos, F. Amet, Y. Bomze, G. Jones, M. Craciun, S. Russo, M. Yamamoto, S. Tarucha, G. Finkelstein, Nano Lett. 16, 4788–91 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    I.V. Borzenets, F. Amet, C.T. Ke, A.W. Draelos, M.T. Wei, A. Seredinski, K. Watanabe, T. Taniguchi, Y. Bomze, M. Yamamoto, S. Tarucha, G. Finkelstein, Phys. Rev. Lett. 117, 237002 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    F. Miao, S. Wijeratne, Y. Zhang, U.C. Coskun, W. Bao, C.N. Lau, Science 317, 1530 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    A. Young, P. Kim, Nat. Phys. 5, 222–226 (2009)CrossRefGoogle Scholar
  18. 18.
    P. Rickhaus, R. Maurand, M.-H. Liu, M. Weiss, K. Richter, C. Schnenberger, Nat. Commun. 4, 2342 (2013)CrossRefGoogle Scholar
  19. 19.
    R.C. Dynes, T.A. Fulton, Phys. Rev. B 3, 3015–3023 (1971)ADSCrossRefGoogle Scholar
  20. 20.
    P.A. Rosenthal, M.R. Beasley, K. Char, M.S. Colclough, G. Zaharchuk, Appl. Phys. Lett. 59, 3482 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    I.O. Kulik, Sov. Phys. JETP 30, 944 (1970)ADSGoogle Scholar
  22. 22.
    J. Bardeen, J.L. Johnson, Phys. Rev. B 5, 72 (1972)ADSCrossRefGoogle Scholar
  23. 23.
    A.V. Svidzinsky, T.N. Antsygina, E.N. Bratus, Sov. Phys. JETP 3, 860 (1972)ADSGoogle Scholar
  24. 24.
    A.V. Svidzinsky, T.N. Antsygina, E.N. Bratus, J. Low Temp. Phys. 10, 131–136 (1973)ADSCrossRefGoogle Scholar
  25. 25.
    A.A. Golubov, M.Y. Kupriyanov, E. Il’ichev, Rev. Mod. Phys. 76, 411 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    A. Steinbach, P. Joyez, A. Cottet, D. Esteve, M.H. Devoret, M.E. Huber, J.M. Martinis, Phys. Rev. Lett. 87, 137003 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    P. Joyez, D. Vion, M. Gtz, M. Devoret, D. Esteve, J. Supercond. 12(6), 757–766 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    D. Vion, M. Gtz, P. Joyez, D. Esteve, M.H. Devoret, Phys. Rev. Lett. 77, 3435 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    P. Jarillo-Herrero, J.A. van Dam, L.P. Kouwenhoven, Nature 439, 953 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    R.L. Kautz, J.M. Martinis, Phys. Rev. B 42, 9903 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    G.L. Ingold, H. Grabert, U. Eberhardt, Phys. Rev. B 50, 395 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    I.V. Borzenets, U.C. Coskun, S.J. Jones, G. Finkelstein, Phys. Rev. Lett. 107, 137005 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    J.R. Williams, D.A. Abanin, L. DiCarlo, L.S. Levitov, C.M. Marcus, Phys. Rev. B 80, 045408 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anne W. Draelos
    • 1
  • Ming Tso Wei
    • 1
  • Andrew Seredinski
    • 1
  • Chung Ting Ke
    • 1
  • Yash Mehta
    • 2
  • Russell Chamberlain
    • 2
  • Kenji Watanabe
    • 3
  • Takashi Taniguchi
    • 3
  • Michihisa Yamamoto
    • 4
  • Seigo Tarucha
    • 5
    • 6
  • Ivan V. Borzenets
    • 7
  • François Amet
    • 2
  • Gleb Finkelstein
    • 1
  1. 1.Department of PhysicsDuke UniversityDurhamUSA
  2. 2.Department of Physics and AstronomyAppalachian State UniversityBooneUSA
  3. 3.Advanced Materials LaboratoryNIMSTsukubaJapan
  4. 4.Quantum Phase Electronics Center (QPEC)University of TokyoBunkyo-kuJapan
  5. 5.Department of Applied PhysicsUniversity of TokyoBunkyo-kuJapan
  6. 6.Center for Emergent Matter Science (CEMS)RIKENWako-shiJapan
  7. 7.Department of PhysicsCity University of Hong KongKowloonHong Kong

Personalised recommendations