Advertisement

Journal of Low Temperature Physics

, Volume 191, Issue 3–4, pp 242–256 | Cite as

Kinematics of the Doped Quantum Vortices in Superfluid Helium Droplets

  • Charles Bernando
  • Andrey F. Vilesov
Article

Abstract

Recent observation of quantum vortices in superfluid \(^{4}\)He droplets measuring a few hundreds of nanometers in diameter involved decoration of vortex cores by clusters containing large numbers of Xe atoms, which served as X-ray contrast agents. Here, we report on the study of the kinematics of the combined vortex–cluster system in a cylinder and in a sphere. Equilibrium states, characterized by total angular momentum, L, were found by minimizing the total energy, E, which sums from the kinetic energy of the liquid due to the vortex and due to orbiting Xe clusters, as well as solvation energy of the cluster in the droplet. Calculations show that, at small mass of the cluster, the equilibrium displacement of the system from the rotation axis is close to that for the bare vortex. However, upon decrease in L beyond certain critical value, which is larger for heavier clusters, the displacement bifurcates toward the surface region, where the motion of the system is governed by the clusters. In addition, at even smaller L, bare orbiting clusters become energetically favorable, opening the possibility for the vortex to detach from the cluster and to annihilate at the droplet’s surface.

Keywords

quantum vortices Superfluidity Helium droplets 

Notes

Acknowledgements

This work was supported by the NSF Grants DMR-1501276 and DMR-1701077. The authors are thankful to Dr. Curtis Jones for his early contributions to this work and to Sean O’Connell, Rico Mayro Tanyag and Deepak Verma, for careful reading of the manuscript.

References

  1. 1.
    R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)Google Scholar
  2. 2.
    R.P. Feynman, Application of quantum mechanics to liquid helium, in Progress in Low Temperature Physics, ed. by C.J. Gorter (North-Holland Publishing Company, Amsterdam, 1955), p. 1Google Scholar
  3. 3.
    L. Pitaevskii, S. Stringari, Bose–Einstein Condensation and Superfluididty (Oxford University Press, Oxford, 2016)CrossRefzbMATHGoogle Scholar
  4. 4.
    A.L. Fetter, Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83, 2498 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 84, 806 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Observation of vortex lattices in Bose–Einstein condensates. Science 292, 476 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    G.A. Williams, R.E. Packard, Photographs of quantized vortex lines in rotating He II. Phys. Rev. Lett. 33, 280 (1974)ADSCrossRefGoogle Scholar
  9. 9.
    E.J. Yarmchuk, M.J.V. Gordon, R.E. Packard, Observation of stationary vortex arrays in rotating superfluid-helium. Phys. Rev. Lett. 43, 214 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    E.J. Yarmchuk, R.E. Packard, Photographic studies of quantized vortex lines. J. Low Temp. Phys. 46, 479 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    W. Guo, M. La Mantia, D.P. Lathrop, S.W. Van Sciver, Visualization of two-fluid flows of superfluid helium-4. Proc. Natl. Acad. Sci. U. S. A 111, 4653 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    D.P. Meichle, C. Rorai, M.E. Fisher, D.P. Lathrop, Quantized vortex reconnection: fixed points and initial conditions. Phys. Rev. B 86, 014509 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Superfluid helium—visualization of quantized vortices. Nature 441, 588 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    E. Fonda, D.P. Meichle, N.T. Ouellette, S. Hormoz, D.P. Lathrop, Direct observation of Kelvin waves excited by quantized vortex reconnection. Proc. Natl. Acad. Sci. U. S. A. 111, 4707 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    D.E. Zmeev, F. Pakpour, P.M. Walmsley, A.I. Golov, W. Guo, D.N. McKinsey, G.G. Ihas, P.V.E. McClintock, S.N. Fisher, W.F. Vinen, Excimers He\(_{2}^*\) as tracers of quantum turbulence in \(^{4}\)He in the \(T=0\) limit. Phys. Rev. Lett. 110, 175303 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    W. Guo, D.N. McKinsey, A. Marakov, K.J. Thompson, G.G. Ihas, W.F. Vinen, Visualization technique for determining the structure functions of normal-fluid turbulence in superfluid helium-4. J. Low Temp. Phys. 171, 497 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    W. Guo, S.B. Cahn, J.A. Nikkel, W.F. Vinen, D.N. McKinsey, Visualization study of counterflow in superfluid \(^{4}\)He using metastable helium molecules. Phys. Rev. Lett. 105, 045301 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    M.A. Weilert, D.L. Whitaker, H.J. Maris, G.M. Seidel, Magnetic levitation of liquid helium. J. Low Temp. Phys. 106, 101 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Weilert, D.L. Whitaker, H.J. Maris, G.M. Seidel, Magnetic levitation and noncoalescence of liquid helium. Phys. Rev. Lett. 77, 4840 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    U. Henne, J.P. Toennies, Electron capture by large helium droplets. J. Chem. Phys. 108, 9327 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    R.E. Grisenti, J.P. Toennies, Cryogenic microjet source for orthotropic beams of ultralarge superfluid helium droplets. Phys. Rev. Lett. 90, 234501 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    M. Kühnel, N. Petridis, D.F.A. Winters, U. Popp, R. Dörner, T. Stöhlker, R.E. Grisenti, Low-Z internal target from a cryogenically cooled liquid microjet source. Nucl. Instrum. Methods A 602, 311 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    L.F. Gomez, E. Loginov, R. Sliter, A.F. Vilesov, Sizes of large helium droplets. J. Chem. Phys. 135, 154201 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    L.F. Gomez, K.R. Ferguson, J.P. Cryan, C. Bacellar, R.M.P. Tanyag, C. Jones, S. Schorb, D. Anielski, A. Belkacem, C. Bernando, R. Boll, J. Bozek, S. Carron, G. Chen, T. Delmas, L. Englert, S.W. Epp, B. Erk, L. Foucar, R. Hartmann, A. Hexemer, M. Huth, J. Kwok, S.R. Leone, J.H.S. Ma, F.R.N.C. Maia, E. Malmerberg, S. Marchesini, D.M. Neumark, B. Poon, J. Prell, D. Rolles, B. Rudek, A. Rudenko, M. Seifrid, K.R. Siefermann, F.P. Sturm, M. Swiggers, J. Ullrich, F. Weise, P. Zwart, C. Bostedt, O. Gessner, A.F. Vilesov, Shapes and vorticities of superfluid helium nanodroplets. Science 345, 906 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    L.F. Gomez, E. Loginov, A.F. Vilesov, Traces of vortices in superfluid helium droplets. Phys. Rev. Lett. 108, 155302 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    R.M. Tanyag, C.F. Jones, C. Bernando, S.M.O. O’Connell, D. Verma, A.F. Vilesov, Experiments with large superfluid helium nanodroplets, in Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero, ed. by A. Osterwalder, O. Dulieu (Royal Society of Chemistry, Cambridge, 2017), p. 389CrossRefGoogle Scholar
  27. 27.
    R.M.P. Tanyag, C. Bernando, C.F. Jones, C. Bacellar, K.R. Ferguson, D. Anielski, R. Boll, S. Carron, J.P. Cryan, L. Englert, S. Epp, B. Erk, L. Foucar, L.F. Gomez, R. Hartmann, D.M. Neumark, D. Rolles, B. Rudek, K.R. Siefermann, J. Ullrich, F. Weise, C. Bostedt, O. Gessner, A.F. Vilesov, X-ray coherent diffraction imaging by immersion in nanodroplets. Struct. Dyn. 2, 051102 (2015)CrossRefGoogle Scholar
  28. 28.
    C.F. Jones, C. Bernando, R.M.P. Tanyag, C. Bacellar, K.R. Ferguson, L.F. Gomez, D. Anielski, A. Belkacem, R. Boll, J. Bozek, S. Carron, J.P. Cryan, L. Englert, S.W. Epp, B. Erk, L. Foucar, R. Hartmann, D.M. Neumark, D. Rolles, A. Rudenko, K.R. Siefermann, F. Weise, B. Rudek, F.P. Sturm, J. Ullrich, C. Bostedt, O. Gessner, A.F. Vilesov, Coupled motion of Xe clusters and quantum vortices in He nanodroplets. Phys. Rev. B 93, 180510(R) (2016)ADSCrossRefGoogle Scholar
  29. 29.
    P.K. Newton, G. Chamoun, Vortex lattice theory: a particle interaction perspective. SIAM Rev. 51, 501 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    K.W. Schwarz, 3-Dimensional vortex dynamics in superfluid \(^{4}\)He—line-line and line-boundary interactions. Phys. Rev. B 31, 5782 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    R. Hanninen, A.W. Baggaley, Vortex filament method as a tool for computational visualization of quantum turbulence. Proc. Natl. Acad. Sci. U. S. A. 111, 4667 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    H. Adachi, S. Fujiyama, M. Tsubota, Steady-state counterflow quantum turbulence: simulation of vortex filaments using the full Biot–Savart law. Phys. Rev. B 81, 104511 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    S. Yui, M. Tsubota, Counterflow quantum turbulence of He-II in a square channel: numerical analysis with nonuniform flows of the normal fluid. Phys. Rev. B 91, 184504 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    F. Ancilotto, M. Pi, M. Barranco, Vortex arrays in nanoscopic superfluid helium droplets. Phys. Rev. B 91, 100503(R) (2015)ADSCrossRefGoogle Scholar
  35. 35.
    G.B. Hess, Angular momentum of superfluid helium in a rotating cylinder. Phys. Rev. 161, 189 (1967)ADSCrossRefGoogle Scholar
  36. 36.
    F. Ancilotto, M. Pi, M. Barranco, Vortex arrays in a rotating superfluid \(^{4}\)He nanocylinder. Phys. Rev. B 90, 174512 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    F. Coppens, F. Ancilotto, M. Barranco, N. Halberstadt, M. Pi, Capture of Xe and Ar atoms by quantized vortices in \(^{4}\)He nanodroplets. Phys. Chem. Chem. Phys. 19, 24805 (2017)CrossRefGoogle Scholar
  38. 38.
    I.A. Pshenichnyuk, N.G. Berloff, Inelastic scattering of xenon atoms by quantized vortices in superfluids. Phys. Rev. B 94, 184505 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    I.A. Pshenichnyuk, Static and dynamic properties of heavily doped quantum vortices. New J. Phys. 19, 105007 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    G.H. Bauer, R.J. Donnelly, W.F. Vinen, Vortex configurations in a freely rotating superfluid drop. J. Low Temp. Phys. 98, 47 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    K.K. Lehmann, R. Schmied, Energetics and possible formation and decay mechanisms of vortices in helium nanodroplets. Phys. Rev. B 68, 224520 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    L. Pitaevskii, S. Stringari, Superfluid effects in rotating helium clusters. Z. Phys. D 16, 299 (1990)ADSCrossRefGoogle Scholar
  43. 43.
    Y.K. Kwon, K.B. Whaley, Atomic-scale quantum solvation structure in superfluid helium-4 clusters. Phys. Rev. Lett. 83, 4108 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    M. Barranco, R. Guardiola, E.S. Hernandez, R. Mayol, J. Navarro, M. Pi, Helium nanodroplets: an overview. J. Low Temp. Phys. 142, 1 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    K.K. Lehmann, Potential of a neutral impurity in a large \(^{4}\)He cluster. Mol. Phys. 97, 645 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    A.A. Radzig, B.M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Springer, Berlin, 1985)CrossRefGoogle Scholar
  47. 47.
    D. Kivotides, C.F. Barenghi, Y.A. Sergeev, Interactions between particles and quantized vortices in superfluid helium. Phys. Rev. B 77, 014527 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    D. Kivotides, Y.A. Sergeev, C.F. Barenghi, Dynamics of solid particles in a tangle of superfluid vortices at low temperatures. Phys. Fluids 20, 055105 (2008)ADSCrossRefzbMATHGoogle Scholar
  49. 49.
    S.T. Nam, Comparison between the vortex patterns in superfluid helium in rotating cylindrical and spherical vessels. J. Korean Phys. Soc. 35, 416 (1999)Google Scholar
  50. 50.
    S.T. Nam, G.H. Bauer, R.J. Donnelly, Vortex patterns in a freely rotating superfluid. J. Korean Phys. Soc. 29, 755 (1996)Google Scholar
  51. 51.
    F. Ancilotto, M. Barranco, F. Coppens, J. Eloranta, N. Halberstadt, A. Hernando, D. Mateo, M. Pi, Density functional theory of doped superfluid liquid helium and nanodroplets. Int. Rev. Phys. Chem. 36, 621 (2017)CrossRefGoogle Scholar
  52. 52.
    V.B. Eltsov, R. de Graaf, P.J. Heikkinen, J.J. Hosio, R. Hanninen, M. Krusius, Vortex formation and annihilation in rotating superfluid \(^{3}\)He–B at low temperatures. J. Low Temp. Phys. 161, 474 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    V.B. Eltsov, R. de Graaf, P.J. Heikkinen, J.J. Hosio, R. Hanninen, M. Krusius, V.S. L’vov, Stability and dissipation of laminar vortex flow in superfluid \(^{3}\)He–B. Phys. Rev. Lett. 105, 125301 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    F. Dalfovo, R. Mayol, M. Pi, M. Barranco, Pinning of quantized vortices in helium drops by dopant atoms and molecules. Phys. Rev. Lett. 85, 1028 (2000)ADSCrossRefGoogle Scholar
  55. 55.
    W.F. Vinen, Detection of single quanta of circulation in liquid helium II. Proc. R. Soc. Lond. Ser. A 260, 218 (1961)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations