Skip to main content
Log in

Kinematics of the Doped Quantum Vortices in Superfluid Helium Droplets

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Recent observation of quantum vortices in superfluid \(^{4}\)He droplets measuring a few hundreds of nanometers in diameter involved decoration of vortex cores by clusters containing large numbers of Xe atoms, which served as X-ray contrast agents. Here, we report on the study of the kinematics of the combined vortex–cluster system in a cylinder and in a sphere. Equilibrium states, characterized by total angular momentum, L, were found by minimizing the total energy, E, which sums from the kinetic energy of the liquid due to the vortex and due to orbiting Xe clusters, as well as solvation energy of the cluster in the droplet. Calculations show that, at small mass of the cluster, the equilibrium displacement of the system from the rotation axis is close to that for the bare vortex. However, upon decrease in L beyond certain critical value, which is larger for heavier clusters, the displacement bifurcates toward the surface region, where the motion of the system is governed by the clusters. In addition, at even smaller L, bare orbiting clusters become energetically favorable, opening the possibility for the vortex to detach from the cluster and to annihilate at the droplet’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  2. R.P. Feynman, Application of quantum mechanics to liquid helium, in Progress in Low Temperature Physics, ed. by C.J. Gorter (North-Holland Publishing Company, Amsterdam, 1955), p. 1

    Google Scholar 

  3. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation and Superfluididty (Oxford University Press, Oxford, 2016)

    Book  MATH  Google Scholar 

  4. A.L. Fetter, Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

  5. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83, 2498 (1999)

    Article  ADS  Google Scholar 

  6. K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 84, 806 (2000)

    Article  ADS  Google Scholar 

  7. J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Observation of vortex lattices in Bose–Einstein condensates. Science 292, 476 (2001)

    Article  ADS  Google Scholar 

  8. G.A. Williams, R.E. Packard, Photographs of quantized vortex lines in rotating He II. Phys. Rev. Lett. 33, 280 (1974)

    Article  ADS  Google Scholar 

  9. E.J. Yarmchuk, M.J.V. Gordon, R.E. Packard, Observation of stationary vortex arrays in rotating superfluid-helium. Phys. Rev. Lett. 43, 214 (1979)

    Article  ADS  Google Scholar 

  10. E.J. Yarmchuk, R.E. Packard, Photographic studies of quantized vortex lines. J. Low Temp. Phys. 46, 479 (1982)

    Article  ADS  Google Scholar 

  11. W. Guo, M. La Mantia, D.P. Lathrop, S.W. Van Sciver, Visualization of two-fluid flows of superfluid helium-4. Proc. Natl. Acad. Sci. U. S. A 111, 4653 (2014)

    Article  ADS  Google Scholar 

  12. D.P. Meichle, C. Rorai, M.E. Fisher, D.P. Lathrop, Quantized vortex reconnection: fixed points and initial conditions. Phys. Rev. B 86, 014509 (2012)

    Article  ADS  Google Scholar 

  13. G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Superfluid helium—visualization of quantized vortices. Nature 441, 588 (2006)

    Article  ADS  Google Scholar 

  14. E. Fonda, D.P. Meichle, N.T. Ouellette, S. Hormoz, D.P. Lathrop, Direct observation of Kelvin waves excited by quantized vortex reconnection. Proc. Natl. Acad. Sci. U. S. A. 111, 4707 (2014)

    Article  ADS  Google Scholar 

  15. D.E. Zmeev, F. Pakpour, P.M. Walmsley, A.I. Golov, W. Guo, D.N. McKinsey, G.G. Ihas, P.V.E. McClintock, S.N. Fisher, W.F. Vinen, Excimers He\(_{2}^*\) as tracers of quantum turbulence in \(^{4}\)He in the \(T=0\) limit. Phys. Rev. Lett. 110, 175303 (2013)

    Article  ADS  Google Scholar 

  16. W. Guo, D.N. McKinsey, A. Marakov, K.J. Thompson, G.G. Ihas, W.F. Vinen, Visualization technique for determining the structure functions of normal-fluid turbulence in superfluid helium-4. J. Low Temp. Phys. 171, 497 (2013)

    Article  ADS  Google Scholar 

  17. W. Guo, S.B. Cahn, J.A. Nikkel, W.F. Vinen, D.N. McKinsey, Visualization study of counterflow in superfluid \(^{4}\)He using metastable helium molecules. Phys. Rev. Lett. 105, 045301 (2010)

    Article  ADS  Google Scholar 

  18. M.A. Weilert, D.L. Whitaker, H.J. Maris, G.M. Seidel, Magnetic levitation of liquid helium. J. Low Temp. Phys. 106, 101 (1997)

    Article  ADS  Google Scholar 

  19. M.A. Weilert, D.L. Whitaker, H.J. Maris, G.M. Seidel, Magnetic levitation and noncoalescence of liquid helium. Phys. Rev. Lett. 77, 4840 (1996)

    Article  ADS  Google Scholar 

  20. U. Henne, J.P. Toennies, Electron capture by large helium droplets. J. Chem. Phys. 108, 9327 (1998)

    Article  ADS  Google Scholar 

  21. R.E. Grisenti, J.P. Toennies, Cryogenic microjet source for orthotropic beams of ultralarge superfluid helium droplets. Phys. Rev. Lett. 90, 234501 (2003)

    Article  ADS  Google Scholar 

  22. M. Kühnel, N. Petridis, D.F.A. Winters, U. Popp, R. Dörner, T. Stöhlker, R.E. Grisenti, Low-Z internal target from a cryogenically cooled liquid microjet source. Nucl. Instrum. Methods A 602, 311 (2009)

    Article  ADS  Google Scholar 

  23. L.F. Gomez, E. Loginov, R. Sliter, A.F. Vilesov, Sizes of large helium droplets. J. Chem. Phys. 135, 154201 (2011)

    Article  ADS  Google Scholar 

  24. L.F. Gomez, K.R. Ferguson, J.P. Cryan, C. Bacellar, R.M.P. Tanyag, C. Jones, S. Schorb, D. Anielski, A. Belkacem, C. Bernando, R. Boll, J. Bozek, S. Carron, G. Chen, T. Delmas, L. Englert, S.W. Epp, B. Erk, L. Foucar, R. Hartmann, A. Hexemer, M. Huth, J. Kwok, S.R. Leone, J.H.S. Ma, F.R.N.C. Maia, E. Malmerberg, S. Marchesini, D.M. Neumark, B. Poon, J. Prell, D. Rolles, B. Rudek, A. Rudenko, M. Seifrid, K.R. Siefermann, F.P. Sturm, M. Swiggers, J. Ullrich, F. Weise, P. Zwart, C. Bostedt, O. Gessner, A.F. Vilesov, Shapes and vorticities of superfluid helium nanodroplets. Science 345, 906 (2014)

    Article  ADS  Google Scholar 

  25. L.F. Gomez, E. Loginov, A.F. Vilesov, Traces of vortices in superfluid helium droplets. Phys. Rev. Lett. 108, 155302 (2012)

    Article  ADS  Google Scholar 

  26. R.M. Tanyag, C.F. Jones, C. Bernando, S.M.O. O’Connell, D. Verma, A.F. Vilesov, Experiments with large superfluid helium nanodroplets, in Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero, ed. by A. Osterwalder, O. Dulieu (Royal Society of Chemistry, Cambridge, 2017), p. 389

    Chapter  Google Scholar 

  27. R.M.P. Tanyag, C. Bernando, C.F. Jones, C. Bacellar, K.R. Ferguson, D. Anielski, R. Boll, S. Carron, J.P. Cryan, L. Englert, S. Epp, B. Erk, L. Foucar, L.F. Gomez, R. Hartmann, D.M. Neumark, D. Rolles, B. Rudek, K.R. Siefermann, J. Ullrich, F. Weise, C. Bostedt, O. Gessner, A.F. Vilesov, X-ray coherent diffraction imaging by immersion in nanodroplets. Struct. Dyn. 2, 051102 (2015)

    Article  Google Scholar 

  28. C.F. Jones, C. Bernando, R.M.P. Tanyag, C. Bacellar, K.R. Ferguson, L.F. Gomez, D. Anielski, A. Belkacem, R. Boll, J. Bozek, S. Carron, J.P. Cryan, L. Englert, S.W. Epp, B. Erk, L. Foucar, R. Hartmann, D.M. Neumark, D. Rolles, A. Rudenko, K.R. Siefermann, F. Weise, B. Rudek, F.P. Sturm, J. Ullrich, C. Bostedt, O. Gessner, A.F. Vilesov, Coupled motion of Xe clusters and quantum vortices in He nanodroplets. Phys. Rev. B 93, 180510(R) (2016)

    Article  ADS  Google Scholar 

  29. P.K. Newton, G. Chamoun, Vortex lattice theory: a particle interaction perspective. SIAM Rev. 51, 501 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. K.W. Schwarz, 3-Dimensional vortex dynamics in superfluid \(^{4}\)He—line-line and line-boundary interactions. Phys. Rev. B 31, 5782 (1985)

    Article  ADS  Google Scholar 

  31. R. Hanninen, A.W. Baggaley, Vortex filament method as a tool for computational visualization of quantum turbulence. Proc. Natl. Acad. Sci. U. S. A. 111, 4667 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. H. Adachi, S. Fujiyama, M. Tsubota, Steady-state counterflow quantum turbulence: simulation of vortex filaments using the full Biot–Savart law. Phys. Rev. B 81, 104511 (2010)

    Article  ADS  Google Scholar 

  33. S. Yui, M. Tsubota, Counterflow quantum turbulence of He-II in a square channel: numerical analysis with nonuniform flows of the normal fluid. Phys. Rev. B 91, 184504 (2015)

    Article  ADS  Google Scholar 

  34. F. Ancilotto, M. Pi, M. Barranco, Vortex arrays in nanoscopic superfluid helium droplets. Phys. Rev. B 91, 100503(R) (2015)

    Article  ADS  Google Scholar 

  35. G.B. Hess, Angular momentum of superfluid helium in a rotating cylinder. Phys. Rev. 161, 189 (1967)

    Article  ADS  Google Scholar 

  36. F. Ancilotto, M. Pi, M. Barranco, Vortex arrays in a rotating superfluid \(^{4}\)He nanocylinder. Phys. Rev. B 90, 174512 (2014)

    Article  ADS  Google Scholar 

  37. F. Coppens, F. Ancilotto, M. Barranco, N. Halberstadt, M. Pi, Capture of Xe and Ar atoms by quantized vortices in \(^{4}\)He nanodroplets. Phys. Chem. Chem. Phys. 19, 24805 (2017)

    Article  Google Scholar 

  38. I.A. Pshenichnyuk, N.G. Berloff, Inelastic scattering of xenon atoms by quantized vortices in superfluids. Phys. Rev. B 94, 184505 (2016)

    Article  ADS  Google Scholar 

  39. I.A. Pshenichnyuk, Static and dynamic properties of heavily doped quantum vortices. New J. Phys. 19, 105007 (2017)

    Article  ADS  Google Scholar 

  40. G.H. Bauer, R.J. Donnelly, W.F. Vinen, Vortex configurations in a freely rotating superfluid drop. J. Low Temp. Phys. 98, 47 (1995)

    Article  ADS  Google Scholar 

  41. K.K. Lehmann, R. Schmied, Energetics and possible formation and decay mechanisms of vortices in helium nanodroplets. Phys. Rev. B 68, 224520 (2003)

    Article  ADS  Google Scholar 

  42. L. Pitaevskii, S. Stringari, Superfluid effects in rotating helium clusters. Z. Phys. D 16, 299 (1990)

    Article  ADS  Google Scholar 

  43. Y.K. Kwon, K.B. Whaley, Atomic-scale quantum solvation structure in superfluid helium-4 clusters. Phys. Rev. Lett. 83, 4108 (1999)

    Article  ADS  Google Scholar 

  44. M. Barranco, R. Guardiola, E.S. Hernandez, R. Mayol, J. Navarro, M. Pi, Helium nanodroplets: an overview. J. Low Temp. Phys. 142, 1 (2006)

    Article  ADS  Google Scholar 

  45. K.K. Lehmann, Potential of a neutral impurity in a large \(^{4}\)He cluster. Mol. Phys. 97, 645 (1999)

    Article  ADS  Google Scholar 

  46. A.A. Radzig, B.M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Springer, Berlin, 1985)

    Book  Google Scholar 

  47. D. Kivotides, C.F. Barenghi, Y.A. Sergeev, Interactions between particles and quantized vortices in superfluid helium. Phys. Rev. B 77, 014527 (2008)

    Article  ADS  Google Scholar 

  48. D. Kivotides, Y.A. Sergeev, C.F. Barenghi, Dynamics of solid particles in a tangle of superfluid vortices at low temperatures. Phys. Fluids 20, 055105 (2008)

    Article  ADS  MATH  Google Scholar 

  49. S.T. Nam, Comparison between the vortex patterns in superfluid helium in rotating cylindrical and spherical vessels. J. Korean Phys. Soc. 35, 416 (1999)

    Google Scholar 

  50. S.T. Nam, G.H. Bauer, R.J. Donnelly, Vortex patterns in a freely rotating superfluid. J. Korean Phys. Soc. 29, 755 (1996)

    Google Scholar 

  51. F. Ancilotto, M. Barranco, F. Coppens, J. Eloranta, N. Halberstadt, A. Hernando, D. Mateo, M. Pi, Density functional theory of doped superfluid liquid helium and nanodroplets. Int. Rev. Phys. Chem. 36, 621 (2017)

    Article  Google Scholar 

  52. V.B. Eltsov, R. de Graaf, P.J. Heikkinen, J.J. Hosio, R. Hanninen, M. Krusius, Vortex formation and annihilation in rotating superfluid \(^{3}\)He–B at low temperatures. J. Low Temp. Phys. 161, 474 (2010)

    Article  ADS  Google Scholar 

  53. V.B. Eltsov, R. de Graaf, P.J. Heikkinen, J.J. Hosio, R. Hanninen, M. Krusius, V.S. L’vov, Stability and dissipation of laminar vortex flow in superfluid \(^{3}\)He–B. Phys. Rev. Lett. 105, 125301 (2010)

    Article  ADS  Google Scholar 

  54. F. Dalfovo, R. Mayol, M. Pi, M. Barranco, Pinning of quantized vortices in helium drops by dopant atoms and molecules. Phys. Rev. Lett. 85, 1028 (2000)

    Article  ADS  Google Scholar 

  55. W.F. Vinen, Detection of single quanta of circulation in liquid helium II. Proc. R. Soc. Lond. Ser. A 260, 218 (1961)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF Grants DMR-1501276 and DMR-1701077. The authors are thankful to Dr. Curtis Jones for his early contributions to this work and to Sean O’Connell, Rico Mayro Tanyag and Deepak Verma, for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey F. Vilesov.

Appendix

Appendix

In order to calculate \(E_{\mathrm{vort}}\), \(L_{\mathrm{vort}}\), and \(\omega = {\mathrm{d}E}/{\mathrm{d}L}\), of a bare curved vortex with different core size in spherical He droplets, Eqs. (3) and (4) are used. Numeric calculations of the angular momentum via Eq. (3) is straightforward. On the other hand, the energy calculation takes a much longer time. To expedite the calculations, a summation method can be utilized by dividing a certain two-dimensional area of the integration, close to the vortex into smaller discrete areas. However, even then the values of energy show some noise, since the smaller discrete areas of integration are still much larger than the required infinitesimal areas of integration. On the other hand, we found that, the results of the LIA calculations of the \(E_{\mathrm{vort}}\) and \(L_{\mathrm{vort}}\) versus r / R for a bare vortex could be well-fitted by a function

$$\begin{aligned} f \left( \frac{r}{R}\right) =1-a+a\cdot \cos \left( {\frac{\pi \cdot \frac{r}{R}}{b}} \right) . \end{aligned}$$
(A.1)

The parameters a and b have been obtained from a limited number of high accuracy calculations of \(E_{\mathrm{vort}}\) and \(L_{\mathrm{vort}}\) at different displacement for 0.1, 2.5, 5 and 10 nm. Table 1 gives the obtained parameters. The resulting fitted dependencies are presented in Fig. 5 and were used to obtain the continuous outcome curves presented in Fig. 3. In Fig. 5, the \(E_{\mathrm{vort}}\) and \(L_{\mathrm{vort}}\) are expressed in units of the corresponding values for central rectilinear vortex with the core radius of \(\xi \), which are given by Eqs. (11, 12). It is seen that the reduced values of energy, angular momentum and angular velocity for bare vortices with different core sizes are very similar.

Table 1 Parameters a and b in Eq. (A.1) used to fit \(E_{\mathrm{vort}}\) and \(L_{\mathrm{vort}}\) versus r / R
Fig. 5
figure 5

Reduced energy, reduced angular momentum in panel (a) and angular velocity in panel (b) of a bare vortex with core radius of \(\xi = 0.1, 2.5, 5\) and 10 nm versus the reduced displacement from the droplet’s center in the droplet having \(R= 100\,\hbox {nm}\) (Color figure online)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernando, C., Vilesov, A.F. Kinematics of the Doped Quantum Vortices in Superfluid Helium Droplets. J Low Temp Phys 191, 242–256 (2018). https://doi.org/10.1007/s10909-018-1869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1869-4

Keywords

Navigation