Journal of Low Temperature Physics

, Volume 191, Issue 3–4, pp 194–205 | Cite as

New Optical Field Generated by Partial Tracing Over Two-Mode Squeezing–Rotating Entangled Vacuum State \(^{{*}}\)

  • Gang Ren
  • Jian-ming Du
  • Wen-Hai Zhang


Based on the two-mode squeezing–rotating entangled vacuum state (Fan and Fan in Commun Theor Phys 33:701–704, 2000), we obtained a new quantum state by using partial tracing method. This new state can be considered as a real chaotic field. We also studied its squeezing properties and quantum statistical properties by giving the analytic results and exact numerical results. It was established that the rotation angle’s parameter plays an important role in this new optical field.


Two-mode squeezing–rotating entangled vacuum state New chaotic field Photon statistics Integration within ordered product (IWOP) method 


  1. 1.
    M.S. Kim, J. Lee, W.J. Munro, Experimentally realizable characterizations of continuous-variable Gaussian states. Phys. Rev. A 66, 032323 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    F. Dell’Anno, S. De Siena, F. Illuminati, Multiphoton quantum optics and quantum state engineering. Phys. Rep. 428, 53–168 (2006)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    M.S. Kim, Recent developments in photon-level operations on travelling light fields. J. Phys. B. 41, 133001 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M.J. Aspachs, R. Calsamiglia, R. Munoz-Tapia, E. Bagan, Phase estimation for thermal Gaussian states. Phys. Rev. A 79, 033834 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    V.V. Dodonov, ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years. J. Opt. B Quantum Semiclass. Opt. 4, R1–R33 (2002)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Zavatta, V. Parigi, M. Bellini, Experimental nonclassicality of single-photon-added thermal light states. Phys. Rev. A 75, 052106 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    V. Parigi, A. Zavatta, M.S. Kim, M. Bellini, Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    T.M. Duc, J. Noh, Higher-order properties of photon-added coherent states. Opt. Commun. 281, 2842–2848 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    H.Y. Fan, Y. Fan, New representation for squeezing-rotating entangled unitary transformation. Commun. Theor. Phys. 33, 701–704 (2000)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    F.A. Popp, J.J. Chang, A. Herzog, Z. Yan, Y. Yan, Evidence of non-classical (squeezed) light in biological systems. Phys. Lett. A 293, 98–102 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    M. Hillery, Amplitude-squared squeezing of the electromagnetic field Phys. Rev. A 36, 3796–3802 (1987)CrossRefGoogle Scholar
  12. 12.
    L. Mandel, Sub-Poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205–207 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    L.Y. Hu, H.Y. Fan, Wavelet transform in the context of quantum mechanics and new orthogonal property of mother wavelets in parameter space. J. Mod. Opt. 55, 1835–1844 (2008)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic EngineeringHuainan Normal UniversityHuainanChina

Personalised recommendations