Advertisement

Journal of Low Temperature Physics

, Volume 191, Issue 3–4, pp 206–216 | Cite as

Robustness of Quantum Discord Between Two Noninteracting Qubits in Spin-Star Baths

Article
  • 101 Downloads

Abstract

We study the dynamics of quantum entanglement and discord between two noninteracting qubits, which couple with spin-star baths, obeying the XY Hamiltonian. We compare the dynamics of quantum discord with that of quantum entanglement. For the initial X-type state, in the common spin bath, the quantum discord is more robust than quantum entanglement. It is found that quantum discord of the two noninteracting qubits can be amplified, even in the regimes where entanglement suddenly disappears. This also points to a fact that the absence of entanglement does not necessarily indicate the absence of quantum correlations.

Keywords

Quantum correlation Quantum discord Spin bath 

Notes

Acknowledgements

This work is supported by the Scientific Research Fund of Hunan Provincial Education Department (Grants Nos. 17B055, QSQC1414) and the Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education.

References

  1. 1.
    C. Bennett, D. DiVincenzo, Nature (London) 404, 247 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)ADSCrossRefGoogle Scholar
  3. 3.
    J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73, 565 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Makhlin, G. Schoen, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    M. Blencowe, Phys. Rep. 395, 159 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    M. Keyl, Phys. Rep. 369, 431 (2002)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    F. Mintert, A.R.R. Carvalho, M. Kuś, A. Buchleitner, Phys. Rep. 415, 207 (2005)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    L. Henderson, V. Vedral, J. Phys. A: Math. Theor. 34, 6899 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 89, 180402 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    B. Groisman, S. Popescu, A. Winter, Phys. Rev. A 72, 032317 (2005)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Luo, Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Phys. Rev. Lett. 104, 080501 (2010)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    D.L. Zhou, Phys. Rev. Lett. 101, 180505 (2008)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    W.H. Zurek, Phys. Rev. A 67, 012320 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    T. Werlang, S. Souza, F.F. Fanchini, C.V. Boas, Phys. Rev. A 80, 024103 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    A. Ferraro, L. Aolita, D. Cavalcanti, F.M. Cucchietti, A. Acín, Phys. Rev. A 81, 052318 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    J. Restrepo, B.A. Rodrguez, J. Phys. B: At. Mol. Opt. Phys. 49, 125502 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100(2008), 050502 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    B.E. Kane, Nature (London) 393, 133 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    G. Burkard, D. Loss, D.P. DiVincenzo, Phys. Rev. B 59, 2070 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  24. 24.
    A.O. Caldeira, A.J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    N.V. Prokofev, P.C. Stamp, Rep. Prog. Phys. 63, 669 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    X.Z. Yuan, H.J. Goan, K.D. Zhu, Phys. Rev. B 75, 045331 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    A. Hutton, S. Bose, Phys. Rev. A 69, 042312 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Handouni, F. Petruccione, Phys. Rev. B 76, 174306 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    J. Jing, Z.G. Lü, G. Yang, Phys. Rev. A 76, 032322 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    L. Mazzola, J. Piilo, S. Maniscalco, Phys. Rev. Lett. 104, 200401 (2010)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and Computational SciencesHunan First Normal UniversityChangshaChina
  2. 2.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of PhysicsHunan Normal UniversityChangshaChina

Personalised recommendations