Journal of Low Temperature Physics

, Volume 191, Issue 3–4, pp 217–227 | Cite as

Inhomogeneous Phase Effect of Smart Meta-Superconducting \(\hbox {MgB}_{2}\)

  • Yongbo Li
  • Honggang Chen
  • Weichang Qi
  • Guowei Chen
  • Xiaopeng Zhao
Article
  • 59 Downloads

Abstract

The inhomogeneous phase of a smart meta-superconductor has a great effect on its superconductivity. In this paper, the effect of concentration, dimensions, electroluminescence (EL) intensity, and distribution of the inhomogeneous phase on the superconducting critical temperature \((T_{C})\) has been systematically investigated. An ex situ solid sintering was utilized to prepare smart meta-superconducting \(\hbox {MgB}_{2}\) doped with six kinds of electroluminescent materials, such as \(\hbox {YVO}_{4}{:}\hbox {Eu}^{3+}\) and \(\hbox {Y}_{2}\hbox {O}_{3}{:}\hbox {Eu}^{3+}\) flakes. Elemental mappings through energy dispersive spectroscopy (EDS) show that the inhomogeneous phase is comparatively uniformly dispersed around the \(\hbox {MgB}_{2}\) particles; thus V, Y, and Eu were accumulated at a small area. The measurement results show that the optimum doping concentration of the meta-superconducting \(\hbox {MgB}_{2}\) is 2.0 wt%. The offset temperature (\(T_{C}^{{ off}}\)) of the sample doped with 2.0 wt% dopant A is 1.6 K higher than that of pure \(\hbox {MgB}_{2}\). The improvement in \(T_{C}^{{ off}}\) is likely related to the sizes, thickness, and EL intensity of the inhomogeneous phase of \(\hbox {MgB}_{2}\) smart meta-superconductor. This experiment provides a novel approach to enhance \(T_{C}\).

Keywords

Smart meta-superconductor Inhomogeneous phase \(\hbox {MgB}_{2}\) Ex situ sintering \(T_{C}\) 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China for Distinguished Young Scholar under Grant No. 50025207.

References

  1. 1.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63–64 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115–R146 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    J.S. Slusky, N. Rogado, K.A. Regan, M.A. Hayward, P. Khalifah, T. He, K. Inumaru, S.M. Loureiro, M.K. Haas, H.W. Zandbergen, R.J. Cava, Nature 410(6826), 343–345 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    H. Luo, C.M. Li, H.M. Luo, S.Y. Ding, J. Appl. Phys. 91(10), 7122–7124 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    R.J. Cava, H.W. Zandbergen, K. Inumaru, Physica C 385, 8–15 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    S.M. Kazakov, R. Puzniak, K. Rogacki, A.V. Mironov, N.D. Zhigadlo, J. Jun, C. Soltmann, B. Batlogg, J. Karpinski, Phys. Rev. B 71(2), 024533 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    A. Bianconi, Y. Busby, M. Fratini, V. Palmisano, L. Simonelli, M. Filippi, S. Sanna, F. Congiu, A. Saccone, M. Giovannini, S. De Negri, J. Supercond. Nov. Magn. 20(7), 495–501 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    O. de la Peña, A. Aguayo, R. de Coss, Phys. Rev. B 66(1), 012511 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    J. Kortus, O.V. Dolgov, R.K. Kremer, A.A. Golubov, Phys. Rev. Lett. 94(2), 027002 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Y.G. Zhao, X.P. Zhang, P.T. Qiao, H.T. Zhang, S.L. Jia, B.S. Cao, M.H. Zhu, Z.H. Han, X.L. Wang, B.L. Gu, Physica C 361, 91–94 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    M. Monni, M. Affronte, C. Bernini, D. Di Castro, C. Ferdeghini, M. Lavagnini, P. Manfrinetti, A. Orecchini, A. Palenzona, C. Petrillo, P. Postorino, A. Sacchetti, F. Sacchetti, M. Putti, Physica C 460–462, 598–599 (2007)CrossRefGoogle Scholar
  12. 12.
    A.V. Sologubenko, N.D. Zhigadlo, S.M. Kazakov, J. Karpinski, H.R. Ott, Phys. Rev. B 71(2), 020501 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    K. Rogacki, B. Batlogg, J. Karpinski, N.D. Zhigadlo, G. Schuck, S.M. Kazakov, P. Wägli, R. Puźniak, A. Wiśniewski, F. Carbone, A. Brinkman, D. van der Marel, Phys. Rev. B 73(17), 174520 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Sologubenko, N.D. Zhigadlo, J. Karpinski, H.R. Ott, Phys. Rev. B 74(18), 184523 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    S.X. Dou, S. Soltanian, J. Horvat, X.L. Wang, S.H. Zhou, M. Ionescu, H.K. Liu, P. Munroe, M. Tomsic, Appl. Phys. Lett. 81(18), 3419–3421 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    J.H. Kim, S. Zhou, M.S.A. Hossain, A.V. Pan, S.X. Dou, Appl. Phys. Lett. 89(14), 142505 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    P. Postorino, A. Congeduti, P. Dore, A. Nucara, A. Bianconi, D. Di Castro, S. De Negri, A. Saccone, Phys. Rev. B 65(2), 020507 (2001)CrossRefGoogle Scholar
  18. 18.
    T. Takenobu, T. Ito, D. Hieu Chi, K. Prassides, Y. Iwasa, Phys. Rev. B 64(13), 134513 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    A. Bianconi, S. Agrestini, D. Di Castro, G. Campi, G. Zangari, N.L. Saini, A. Saccone, S. De Negri, M. Giovannini, G. Profeta, A. Continenza, G. Satta, S. Massidda, A. Cassetta, A. Pifferi, M. Colapietro, Phys. Rev. B 65(17), 174515 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    J.Q. Li, L. Li, F.M. Liu, C. Dong, J.Y. Xiang, Z.X. Zhao, Phys. Rev. B 65(13), 134426 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    W. Mickelson, J. Cumings, W.Q. Han, A. Zettl, Phys. Rev. B 65(5), 052505 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    R.H. Wilke, S.L. Bud’ko, P.C. Canfield, D.K. Finnemore, R.J. Suplinskas, S.T. Hannahs, Phys. Rev. Lett. 92(21), 217003 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    H. Liu, X.P. Zhao, Y. Yang, Q.W. Li, J. Lv, Adv. Mater. 20(11), 2050–2054 (2008)CrossRefGoogle Scholar
  24. 24.
    Y.P. Qiao, X.P. Zhao, Y.Y. Su, J. Mater. Chem. 21(2), 394–399 (2011)CrossRefGoogle Scholar
  25. 25.
    X.P. Zhao, J. Mater. Chem. 22(19), 9439–9449 (2012)CrossRefGoogle Scholar
  26. 26.
    W.T. Jiang, Z.L. Xu, Z. Chen, X.P. Zhao, J. Funct. Mater 38, 157–160 (2007) (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL200701046.htm
  27. 27.
    S.H. Xu, Y.W. Zhou, X.P. Zhao, Mater. Rev. 21, 162–166 (2007) (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-CLDB2007S3048.htm
  28. 28.
    Z.W. Zhang, S. Tao, G.W. Chen, X.P. Zhao, J. Supercond. Nov. Magn. 29(5), 1159–1162 (2016)CrossRefGoogle Scholar
  29. 29.
    S. Tao, Y.B. Li, G.W. Chen, X.P. Zhao, J. Supercond. Nov. Magn. 30(6), 1405–1411 (2017)CrossRefGoogle Scholar
  30. 30.
    D.A. Kirzhnits, E.G. Maksimov, D.I. Khomskii, J. Low Temp. Phys. 10(1–2), 79–93 (1973)ADSCrossRefGoogle Scholar
  31. 31.
    I.I. Smolyaninov, V.N. Smolyaninova, Adv. Condens. Matter Phys. 91(9), 479635 (2014)Google Scholar
  32. 32.
    V.N. Smolyaninova, B. Yost, K. Zander, M.S. Osofsky, H. Kim, S. Saha, R.L. Greene, I.I. Smolyaninov, Sci. Rep. 4, 7321 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    V.N. Smolyaninova, K. Zander, T. Gresock, C. Jensen, J.C. Prestigiacomo, M.S. Osofsky, I.I. Smolyaninov, Sci. Rep. 5, 15777 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    W.C. Qi, G.W. Chen, C.S. Yang, C.R. Luo, X.P. Zhao, J. Mater. Sci.: Mater. Electron. 28(13), 9237–9244 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yongbo Li
    • 1
  • Honggang Chen
    • 1
  • Weichang Qi
    • 1
  • Guowei Chen
    • 1
  • Xiaopeng Zhao
    • 1
  1. 1.Smart Materials Laboratory, Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations