Skip to main content
Log in

Annealing Effects on the Normal-State Resistive Properties of Underdoped Cuprates

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The influence of room-temperature annealing on the parameters of the basal-plane electrical resistance of underdoped \(\hbox {YBa}_2\hbox {Cu}_3\hbox {O}_{7-\delta }\) and \(\hbox {HoBa}_2\hbox {Cu}_3\hbox {O}_{7-\delta }\) single crystals in the normal and superconducting states is investigated. The form of the derivatives \(\mathrm{d}\rho (T)/\mathrm{d}T\) makes it possible to determine the onset temperature of the fluctuation conductivity and indicates a nonuniform distribution of the labile oxygen. Annealing has been revealed to lead to a monotonic decrease in the oxygen deficiency, that primarily manifests itself as a decrease in the residual resistance, an increase of \(T_c\), and a decrease in the Debye temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908 (1987). https://doi.org/10.1103/PhysRevLett.58.908

    Article  ADS  Google Scholar 

  2. R. Vovk, N. Vovk, G. Khadzhai, I. Goulatis, A. Chroneos, Sol. State Commun. 190, 18 (2014). https://doi.org/10.1016/j.ssc.2014.04.004. http://www.sciencedirect.com/science/article/pii/S0038109814001549

  3. S. Sadewasser, J.S. Schilling, A.P. Paulikas, B.W. Veal, Phys. Rev. B 61, 741 (2000). https://doi.org/10.1103/PhysRevB.61.741

    Article  ADS  Google Scholar 

  4. D.D. Balla, A.V. Bondarenko, R.V. Vovk, M.A. Obolenskii, A.A. Prodan, Low Temp. Phys. 23(10), 777 (1997). https://doi.org/10.1063/1.593445. http://scitation.aip.org/content/aip/journal/ltp/23/10/10.1063/1.593445

  5. J.D. Jorgensen, S. Pei, P. Lightfoor, H. Shi, A.P. Paulikas, B.W. Veal, Physica C 167(5–6), 571 (1990). https://doi.org/10.1016/0921-4534(90)90676-6. http://www.sciencedirect.com/science/article/pii/0921453490906766

  6. R.V. Vovk, N.R. Vovk, O.V. Dobrovolskiy, J. Low Temp. Phys. 175(3–4), 614 (2014). https://doi.org/10.1007/s10909-014-1121-9

    Article  ADS  Google Scholar 

  7. B. Martínez, F. Sandiumenge, S.P. Nol, N. Vilalta, J. Fontcuberta, X. Obradors, Appl. Phys. Lett. 66(6), 772 (1995). https://doi.org/10.1063/1.114089. http://link.aip.org/link/?APL/66/772/1

  8. D.A. Lotnyk, R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, J. Kovac, V. Antal, M. Kanuchova, M. Sefcikova, P. Diko, A. Feher, A. Chroneos, J. Low Temp. Phys. 161(3–4), 387 (2010). https://doi.org/10.1007/s10909-010-0198-z

    Article  ADS  Google Scholar 

  9. Z. Li, H. Wang, N. Yang, X. Jin, S. Li, J. Chin. Ceram. Soc. 18, 555 (1990)

    Google Scholar 

  10. R. Vovk, N. Vovk, G. Khadzhai, O. Dobrovolskiy, Z. Nazyrov, J. Mater. Sci. Mater. Electron. 25(12), 5226 (2014). https://doi.org/10.1007/s10854-014-2292-5

    Article  Google Scholar 

  11. J. Kircher, M. Cardona, A. Zibold, K. Widder, H.P. Geserich, Phys. Rev. B 48, 9684 (1993). https://doi.org/10.1103/PhysRevB.48.9684

    Article  ADS  Google Scholar 

  12. R.V. Vovk, Z.F. Nazyrov, M.A. Obolenskii, I.L. Goulatis, A. Chroneos, V.M. Pinto Simoes, J. Alloys Compd. 509(13), 4553 (2011). https://doi.org/10.1016/j.jallcom.2011.01.102. http://www.sciencedirect.com/science/article/pii/S0925838811001575

  13. R.P. Gupta, M. Gupta, Phys. Rev. B 51, 11760 (1995). https://doi.org/10.1103/PhysRevB.51.11760

    Article  ADS  Google Scholar 

  14. A.V. Bondarenko, A.A. Prodan, M.A. Obolenskii, R.V. Vovk, T.R. Arouri, Low Temp. Phys. 27(5), 339 (2001). https://doi.org/10.1063/1.1374717. http://scitation.aip.org/content/aip/journal/ltp/27/5/10.1063/1.1374717

  15. H.A. Borges, M.A. Continentino, Sol. State Comm. 80(3), 197 (1991). https://doi.org/10.1016/0038-1098(91)90180-4. http://www.sciencedirect.com/science/article/pii/0038109891901804

  16. R.V. Vovk, N.R. Vovk, G.Y. Khadzhai, I.L. Goulatis, A. Chroneos, Physica B 422, 33 (2013). https://doi.org/10.1016/j.physb.2013.04.032. http://www.sciencedirect.com/science/article/pii/S0921452613002433

  17. D.M. Ginsberg (ed.), Physical Properties of High Temperature Superconductors I (Word Scientific, Singapore, 1989)

    Google Scholar 

  18. R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Appl. Phys. A 117, 9971002 (2014). https://doi.org/10.1007/s00339-014-8670-2

    Article  Google Scholar 

  19. M.V. Sadovskii, I.A. Nekrasov, E.Z. Kuchinskii, T. Pruschke, V.I. Anisimov, Phys. Rev. B 72, 155105 (2005). https://doi.org/10.1103/PhysRevB.72.155105

    Article  ADS  Google Scholar 

  20. R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Sol. State Commun. 204, 64 (2015). https://doi.org/10.1016/j.ssc.2014.12.008. http://www.sciencedirect.com/science/article/pii/S0038109814005067

  21. T.A. Friedmann, J.P. Rice, J. Giapintzakis, D.M. Ginsberg, Phys. Rev. B 39, 4258 (1989). https://doi.org/10.1103/PhysRevB.39.4258

    Article  ADS  Google Scholar 

  22. R.V. Vovk, N.R. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Z.F. Nazyrov, Curr. Appl. Phys. 14(12), 1779 (2014). https://doi.org/10.1016/j.cap.2014.10.002. http://www.sciencedirect.com/science/article/pii/S1567173914003113

  23. K. Widder, D. Berner, H. Geserich, W. Widder, H. Braun, Physica C 251(3–4), 274 (1995). https://doi.org/10.1016/0921-4534(95)00423-8

    Article  ADS  Google Scholar 

  24. R. Vovk, A. Zavgorodniy, M. Obolenskii, I. Goulatis, A. Chroneos, V. Pinto Simoes, J. Mater. Sci. Mater. Electr. 22(1), 20 (2011). https://doi.org/10.1007/s10854-010-0076-0

    Article  Google Scholar 

  25. P.W. Anderson, Phys. Rev. Lett. 67, 2092 (1991). https://doi.org/10.1103/PhysRevLett.67.2092

    Article  ADS  Google Scholar 

  26. R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, A.I. Chroneos, V.M. Pinto Simoes, J. Mater. Sci. Mater. Electron. 20(9), 858 (2009). https://doi.org/10.1007/s10854-008-9806-y

    Article  Google Scholar 

  27. J. Ashkenazi, J. Supercond. Nov. Magnet. 24(4), 1281 (2011). https://doi.org/10.1007/s10948-010-0823-8

    Article  MathSciNet  Google Scholar 

  28. R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, D.A. Lotnyk, K.A. Kotvitskaya, Physica B 404(20), 3516 (2009). https://doi.org/10.1016/j.physb.2009.05.047. http://www.sciencedirect.com/science/article/pii/S0921452609003366

  29. A.L. Solovjov, L.V. Omelchenko, V.B. Stepanov, R.V. Vovk, H.U. Habermeier, H. Lochmajer, P. Przysłupski, K. Rogacki, Phys. Rev. B 94, 224505 (2016). https://doi.org/10.1103/PhysRevB.94.224505

    Article  ADS  Google Scholar 

  30. J. Bednorz, K. Müller, Z. Phys, B Condens. Matter 64(2), 189 (1986). https://doi.org/10.1007/BF01303701

    Article  Google Scholar 

  31. R. Vovk, G. Khadzhai, I. Goulatis, A. Chroneos, Physica B 436, 88 (2014). https://doi.org/10.1016/j.physb.2013.11.056. http://www.sciencedirect.com/science/article/pii/S0921452613007692

  32. R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Z.F. Nazyrov, A. Chroneos, Physica C 516, 58 (2015). https://doi.org/10.1016/j.physc.2015.06.011. http://www.sciencedirect.com/science/article/pii/S0921453415002142

  33. L. Colquitt, J. Appl. Phys. 36(8), 2454 (1965). https://doi.org/10.1063/1.1714510. http://scitation.aip.org/content/aip/journal/jap/36/8/10.1063/1.1714510

  34. V.M. Apalkov, M.E. Portnoi, Phys. Rev. B 65, 125310 (2002). https://doi.org/10.1103/PhysRevB.65.125310. http://link.aps.org/doi/10.1103/PhysRevB.65.125310

  35. R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, Phys. Rev. B 68, 134508 (2003). https://doi.org/10.1103/PhysRevB.68.134508

    Article  ADS  Google Scholar 

  36. I.N. Adamenko, K.E. Nemchenko, V.I. Tsyganok, A.I. Chervanev, Low Temp. Phys. 20(7), 498 (1994). https://doi.org/10.1063/1.592763. http://link.aip.org/link/?LTP/20/498/1

  37. R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, Phys. Rev. Lett. 91, 235302 (2003). https://doi.org/10.1103/PhysRevLett.91.235302

    Article  ADS  Google Scholar 

  38. P.J. Curran, V.V. Khotkevych, S.J. Bending, A.S. Gibbs, S.L. Lee, A.P. Mackenzie, Phys. Rev. B 84, 104507 (2011). https://doi.org/10.1103/PhysRevB.84.104507

    Article  ADS  Google Scholar 

  39. T. Aisaka, M. Shimizu, J. Phys. Soc. Jpn. 28(3), 646 (1970). https://doi.org/10.1143/JPSJ.28.646

    Article  ADS  Google Scholar 

  40. P.B. Allen, Theory of Resistivity “Saturation” in Superconductivity in D- and F-Band Metals (Academic, New York, 1980)

    Google Scholar 

  41. F. Claisse, M. Cormier, C. Frigout, High Temp. High Press. 4, 395 (1972)

    Google Scholar 

  42. E.A. Zhurakovskiy, V.F. Nemchenko, Kinetic Properties and Electronic Structure of Interstitials (Naukova dumka, Kiev, 1989)

    Google Scholar 

  43. V.F. Gantmacher, Electrons in Disordered Media (Fizmatlit, Moscow, 2013)

    Google Scholar 

  44. V. Sankaranarayanan, G. Rangarajan, R. Srinivasan, Pramana 23, 423 (1984)

  45. B. Leridon, A. Défossez, J. Dumont, J. Lesueur, J.P. Contour, Phys. Rev. Lett. 87, 197007 (2001). https://doi.org/10.1103/PhysRevLett.87.197007

    Article  ADS  Google Scholar 

  46. R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, S.N. Kamchatnaya, V.M. Pinto, Physica B (2017). https://doi.org/10.1016/j.physb.2017.05.020. http://www.sciencedirect.com/science/article/pii/S0921452617302387

  47. G.Y. Khadzhai, N.R. Vovk, R.V. Vovk, Fiz. Nizk. Temp. 40(6), 630 (2014)

    Google Scholar 

  48. W. Wong-Ng, L.P. Cook, H.B. Su, M.D. Vaudin, C.K. Chiang, D.R. Welch, E.R. Fuller, J.Z. Yang, L.H. Bennett, J. Res. Natl. Inst. Stand. Technol. 111, 41 (2006). https://doi.org/10.6028/jres.111.004

    Article  Google Scholar 

  49. V.I. Khotkevich, B.A. Merisov, M.A. Ermolaev, A.V. Krasnokutskiy, Fiz. Nizk. Temp. 9, 1056 (1983)

    Google Scholar 

  50. Y.M. Kagan, A.P. Gernov, J. Exp. Theor. Phys. 60, 1832 (1971)

    Google Scholar 

  51. G.Y. Khadzhai, R.V. Vovk, N.R. Vovk, Y.I. Boiko, S.N. Kamchatnaya, V.M. Pinto Simoes, O.V. Dobrovolskiy, Mod. Phys. Lett. B. 32, 1750367 (2017). https://doi.org/10.1142/S0217984917503675

  52. P.L. Rossiter, The Electrical Resistivity of Metals and Alloys (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  53. B.N. Rolov, V.E. Yurkevich, Physics of Smeared Phase Transitions (RGU, Rostov-on-Don, 1983)

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant Agreement No. 644348 (MagIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Dobrovolskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vovk, R.V., Khadzhai, G.Y., Nazyrov, Z.F. et al. Annealing Effects on the Normal-State Resistive Properties of Underdoped Cuprates. J Low Temp Phys 191, 184–193 (2018). https://doi.org/10.1007/s10909-018-1856-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1856-9

Keywords

Navigation