Advertisement

Journal of Low Temperature Physics

, Volume 191, Issue 3–4, pp 184–193 | Cite as

Annealing Effects on the Normal-State Resistive Properties of Underdoped Cuprates

  • R. V. Vovk
  • G. Ya. Khadzhai
  • Z. F. Nazyrov
  • S. N. Kamchatnaya
  • A. Feher
  • O. V. Dobrovolskiy
Article
  • 59 Downloads

Abstract

The influence of room-temperature annealing on the parameters of the basal-plane electrical resistance of underdoped \(\hbox {YBa}_2\hbox {Cu}_3\hbox {O}_{7-\delta }\) and \(\hbox {HoBa}_2\hbox {Cu}_3\hbox {O}_{7-\delta }\) single crystals in the normal and superconducting states is investigated. The form of the derivatives \(\mathrm{d}\rho (T)/\mathrm{d}T\) makes it possible to determine the onset temperature of the fluctuation conductivity and indicates a nonuniform distribution of the labile oxygen. Annealing has been revealed to lead to a monotonic decrease in the oxygen deficiency, that primarily manifests itself as a decrease in the residual resistance, an increase of \(T_c\), and a decrease in the Debye temperature.

Keywords

Superconducting cuprates Holmium Annealing Electrical resistance measurements 

Notes

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant Agreement No. 644348 (MagIC).

References

  1. 1.
    M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908 (1987).  https://doi.org/10.1103/PhysRevLett.58.908 ADSCrossRefGoogle Scholar
  2. 2.
    R. Vovk, N. Vovk, G. Khadzhai, I. Goulatis, A. Chroneos, Sol. State Commun. 190, 18 (2014).  https://doi.org/10.1016/j.ssc.2014.04.004. http://www.sciencedirect.com/science/article/pii/S0038109814001549
  3. 3.
    S. Sadewasser, J.S. Schilling, A.P. Paulikas, B.W. Veal, Phys. Rev. B 61, 741 (2000).  https://doi.org/10.1103/PhysRevB.61.741 ADSCrossRefGoogle Scholar
  4. 4.
    D.D. Balla, A.V. Bondarenko, R.V. Vovk, M.A. Obolenskii, A.A. Prodan, Low Temp. Phys. 23(10), 777 (1997).  https://doi.org/10.1063/1.593445. http://scitation.aip.org/content/aip/journal/ltp/23/10/10.1063/1.593445
  5. 5.
    J.D. Jorgensen, S. Pei, P. Lightfoor, H. Shi, A.P. Paulikas, B.W. Veal, Physica C 167(5–6), 571 (1990).  https://doi.org/10.1016/0921-4534(90)90676-6. http://www.sciencedirect.com/science/article/pii/0921453490906766
  6. 6.
    R.V. Vovk, N.R. Vovk, O.V. Dobrovolskiy, J. Low Temp. Phys. 175(3–4), 614 (2014).  https://doi.org/10.1007/s10909-014-1121-9 ADSCrossRefGoogle Scholar
  7. 7.
    B. Martínez, F. Sandiumenge, S.P. Nol, N. Vilalta, J. Fontcuberta, X. Obradors, Appl. Phys. Lett. 66(6), 772 (1995).  https://doi.org/10.1063/1.114089. http://link.aip.org/link/?APL/66/772/1
  8. 8.
    D.A. Lotnyk, R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, J. Kovac, V. Antal, M. Kanuchova, M. Sefcikova, P. Diko, A. Feher, A. Chroneos, J. Low Temp. Phys. 161(3–4), 387 (2010).  https://doi.org/10.1007/s10909-010-0198-z ADSCrossRefGoogle Scholar
  9. 9.
    Z. Li, H. Wang, N. Yang, X. Jin, S. Li, J. Chin. Ceram. Soc. 18, 555 (1990)Google Scholar
  10. 10.
    R. Vovk, N. Vovk, G. Khadzhai, O. Dobrovolskiy, Z. Nazyrov, J. Mater. Sci. Mater. Electron. 25(12), 5226 (2014).  https://doi.org/10.1007/s10854-014-2292-5 CrossRefGoogle Scholar
  11. 11.
    J. Kircher, M. Cardona, A. Zibold, K. Widder, H.P. Geserich, Phys. Rev. B 48, 9684 (1993).  https://doi.org/10.1103/PhysRevB.48.9684 ADSCrossRefGoogle Scholar
  12. 12.
    R.V. Vovk, Z.F. Nazyrov, M.A. Obolenskii, I.L. Goulatis, A. Chroneos, V.M. Pinto Simoes, J. Alloys Compd. 509(13), 4553 (2011).  https://doi.org/10.1016/j.jallcom.2011.01.102. http://www.sciencedirect.com/science/article/pii/S0925838811001575
  13. 13.
    R.P. Gupta, M. Gupta, Phys. Rev. B 51, 11760 (1995).  https://doi.org/10.1103/PhysRevB.51.11760 ADSCrossRefGoogle Scholar
  14. 14.
    A.V. Bondarenko, A.A. Prodan, M.A. Obolenskii, R.V. Vovk, T.R. Arouri, Low Temp. Phys. 27(5), 339 (2001).  https://doi.org/10.1063/1.1374717. http://scitation.aip.org/content/aip/journal/ltp/27/5/10.1063/1.1374717
  15. 15.
    H.A. Borges, M.A. Continentino, Sol. State Comm. 80(3), 197 (1991).  https://doi.org/10.1016/0038-1098(91)90180-4. http://www.sciencedirect.com/science/article/pii/0038109891901804
  16. 16.
    R.V. Vovk, N.R. Vovk, G.Y. Khadzhai, I.L. Goulatis, A. Chroneos, Physica B 422, 33 (2013).  https://doi.org/10.1016/j.physb.2013.04.032. http://www.sciencedirect.com/science/article/pii/S0921452613002433
  17. 17.
    D.M. Ginsberg (ed.), Physical Properties of High Temperature Superconductors I (Word Scientific, Singapore, 1989)Google Scholar
  18. 18.
    R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Appl. Phys. A 117, 9971002 (2014).  https://doi.org/10.1007/s00339-014-8670-2 CrossRefGoogle Scholar
  19. 19.
    M.V. Sadovskii, I.A. Nekrasov, E.Z. Kuchinskii, T. Pruschke, V.I. Anisimov, Phys. Rev. B 72, 155105 (2005).  https://doi.org/10.1103/PhysRevB.72.155105 ADSCrossRefGoogle Scholar
  20. 20.
    R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Sol. State Commun. 204, 64 (2015).  https://doi.org/10.1016/j.ssc.2014.12.008. http://www.sciencedirect.com/science/article/pii/S0038109814005067
  21. 21.
    T.A. Friedmann, J.P. Rice, J. Giapintzakis, D.M. Ginsberg, Phys. Rev. B 39, 4258 (1989).  https://doi.org/10.1103/PhysRevB.39.4258 ADSCrossRefGoogle Scholar
  22. 22.
    R.V. Vovk, N.R. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Z.F. Nazyrov, Curr. Appl. Phys. 14(12), 1779 (2014).  https://doi.org/10.1016/j.cap.2014.10.002. http://www.sciencedirect.com/science/article/pii/S1567173914003113
  23. 23.
    K. Widder, D. Berner, H. Geserich, W. Widder, H. Braun, Physica C 251(3–4), 274 (1995).  https://doi.org/10.1016/0921-4534(95)00423-8 ADSCrossRefGoogle Scholar
  24. 24.
    R. Vovk, A. Zavgorodniy, M. Obolenskii, I. Goulatis, A. Chroneos, V. Pinto Simoes, J. Mater. Sci. Mater. Electr. 22(1), 20 (2011).  https://doi.org/10.1007/s10854-010-0076-0 CrossRefGoogle Scholar
  25. 25.
    P.W. Anderson, Phys. Rev. Lett. 67, 2092 (1991).  https://doi.org/10.1103/PhysRevLett.67.2092 ADSCrossRefGoogle Scholar
  26. 26.
    R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, A.I. Chroneos, V.M. Pinto Simoes, J. Mater. Sci. Mater. Electron. 20(9), 858 (2009).  https://doi.org/10.1007/s10854-008-9806-y CrossRefGoogle Scholar
  27. 27.
    J. Ashkenazi, J. Supercond. Nov. Magnet. 24(4), 1281 (2011).  https://doi.org/10.1007/s10948-010-0823-8 MathSciNetCrossRefGoogle Scholar
  28. 28.
    R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, D.A. Lotnyk, K.A. Kotvitskaya, Physica B 404(20), 3516 (2009).  https://doi.org/10.1016/j.physb.2009.05.047. http://www.sciencedirect.com/science/article/pii/S0921452609003366
  29. 29.
    A.L. Solovjov, L.V. Omelchenko, V.B. Stepanov, R.V. Vovk, H.U. Habermeier, H. Lochmajer, P. Przysłupski, K. Rogacki, Phys. Rev. B 94, 224505 (2016).  https://doi.org/10.1103/PhysRevB.94.224505 ADSCrossRefGoogle Scholar
  30. 30.
    J. Bednorz, K. Müller, Z. Phys, B Condens. Matter 64(2), 189 (1986).  https://doi.org/10.1007/BF01303701 CrossRefGoogle Scholar
  31. 31.
    R. Vovk, G. Khadzhai, I. Goulatis, A. Chroneos, Physica B 436, 88 (2014).  https://doi.org/10.1016/j.physb.2013.11.056. http://www.sciencedirect.com/science/article/pii/S0921452613007692
  32. 32.
    R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, Z.F. Nazyrov, A. Chroneos, Physica C 516, 58 (2015).  https://doi.org/10.1016/j.physc.2015.06.011. http://www.sciencedirect.com/science/article/pii/S0921453415002142
  33. 33.
  34. 34.
    V.M. Apalkov, M.E. Portnoi, Phys. Rev. B 65, 125310 (2002).  https://doi.org/10.1103/PhysRevB.65.125310. http://link.aps.org/doi/10.1103/PhysRevB.65.125310
  35. 35.
    R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, Phys. Rev. B 68, 134508 (2003).  https://doi.org/10.1103/PhysRevB.68.134508 ADSCrossRefGoogle Scholar
  36. 36.
    I.N. Adamenko, K.E. Nemchenko, V.I. Tsyganok, A.I. Chervanev, Low Temp. Phys. 20(7), 498 (1994).  https://doi.org/10.1063/1.592763. http://link.aip.org/link/?LTP/20/498/1
  37. 37.
    R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, Phys. Rev. Lett. 91, 235302 (2003).  https://doi.org/10.1103/PhysRevLett.91.235302 ADSCrossRefGoogle Scholar
  38. 38.
    P.J. Curran, V.V. Khotkevych, S.J. Bending, A.S. Gibbs, S.L. Lee, A.P. Mackenzie, Phys. Rev. B 84, 104507 (2011).  https://doi.org/10.1103/PhysRevB.84.104507 ADSCrossRefGoogle Scholar
  39. 39.
    T. Aisaka, M. Shimizu, J. Phys. Soc. Jpn. 28(3), 646 (1970).  https://doi.org/10.1143/JPSJ.28.646 ADSCrossRefGoogle Scholar
  40. 40.
    P.B. Allen, Theory of Resistivity “Saturation” in Superconductivity in D- and F-Band Metals (Academic, New York, 1980)Google Scholar
  41. 41.
    F. Claisse, M. Cormier, C. Frigout, High Temp. High Press. 4, 395 (1972)Google Scholar
  42. 42.
    E.A. Zhurakovskiy, V.F. Nemchenko, Kinetic Properties and Electronic Structure of Interstitials (Naukova dumka, Kiev, 1989)Google Scholar
  43. 43.
    V.F. Gantmacher, Electrons in Disordered Media (Fizmatlit, Moscow, 2013)Google Scholar
  44. 44.
    V. Sankaranarayanan, G. Rangarajan, R. Srinivasan, Pramana 23, 423 (1984)Google Scholar
  45. 45.
    B. Leridon, A. Défossez, J. Dumont, J. Lesueur, J.P. Contour, Phys. Rev. Lett. 87, 197007 (2001).  https://doi.org/10.1103/PhysRevLett.87.197007 ADSCrossRefGoogle Scholar
  46. 46.
    R.V. Vovk, G.Y. Khadzhai, O.V. Dobrovolskiy, S.N. Kamchatnaya, V.M. Pinto, Physica B (2017).  https://doi.org/10.1016/j.physb.2017.05.020. http://www.sciencedirect.com/science/article/pii/S0921452617302387
  47. 47.
    G.Y. Khadzhai, N.R. Vovk, R.V. Vovk, Fiz. Nizk. Temp. 40(6), 630 (2014)Google Scholar
  48. 48.
    W. Wong-Ng, L.P. Cook, H.B. Su, M.D. Vaudin, C.K. Chiang, D.R. Welch, E.R. Fuller, J.Z. Yang, L.H. Bennett, J. Res. Natl. Inst. Stand. Technol. 111, 41 (2006).  https://doi.org/10.6028/jres.111.004 CrossRefGoogle Scholar
  49. 49.
    V.I. Khotkevich, B.A. Merisov, M.A. Ermolaev, A.V. Krasnokutskiy, Fiz. Nizk. Temp. 9, 1056 (1983)Google Scholar
  50. 50.
    Y.M. Kagan, A.P. Gernov, J. Exp. Theor. Phys. 60, 1832 (1971)Google Scholar
  51. 51.
    G.Y. Khadzhai, R.V. Vovk, N.R. Vovk, Y.I. Boiko, S.N. Kamchatnaya, V.M. Pinto Simoes, O.V. Dobrovolskiy, Mod. Phys. Lett. B. 32, 1750367 (2017).  https://doi.org/10.1142/S0217984917503675
  52. 52.
    P.L. Rossiter, The Electrical Resistivity of Metals and Alloys (Cambridge University Press, Cambridge, 2003)Google Scholar
  53. 53.
    B.N. Rolov, V.E. Yurkevich, Physics of Smeared Phase Transitions (RGU, Rostov-on-Don, 1983)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. V. Vovk
    • 1
  • G. Ya. Khadzhai
    • 1
  • Z. F. Nazyrov
    • 1
  • S. N. Kamchatnaya
    • 1
  • A. Feher
    • 2
  • O. V. Dobrovolskiy
    • 1
    • 3
  1. 1.V. Karazin Kharkiv National UniversityKharkivUkraine
  2. 2.P. J. Safárik UniversityKos̆iceSlovakia
  3. 3.Physikalisches Institut Goethe UniversityFrankfurt am MainGermany

Personalised recommendations