Breakdown of Zero-Energy Quantum Hall State in Graphene in the Light of Current Fluctuations and Shot Noise

  • Antti Laitinen
  • Manohar Kumar
  • Teemu Elo
  • Ying Liu
  • T. S. Abhilash
  • Pertti J. Hakonen


We have investigated the cross-over from Zener tunneling of single charge carriers to avalanche type of bunched electron transport in a suspended graphene Corbino disk in the zeroth Landau level. At low bias, we find a tunneling current that follows the gyrotropic Zener tunneling behavior. At larger bias, we find an avalanche type of transport that sets in at a smaller current the larger the magnetic field is. The low-frequency noise indicates strong bunching of the electrons in the avalanches. On the basis of the measured low-frequency switching noise power, we deduce the characteristic switching rates of the avalanche sequence. The simultaneous microwave shot noise measurement also reveals intrinsic correlations within the avalanche pulses and indicate a decrease in correlations with increasing bias.


Graphene Quantum Hall Dielectric breakdown Shot noise 



We thank C. Flindt, A. Harju, T. Ojanen, S. Paraoanu, and B. Plaçais, for fruitful discussions. This work has been supported in part by the EU Framework Programme (FP7 and H2020 Graphene Flagship), by ERC (Grant No. 670743), and by the Academy of Finland (Project No. 250280 LTQ CoE). A.L. is grateful to Vaisälä Foundation of the Finnish Academy of Science and Letters for a scholarship. This research project made use of the Aalto University OtaNano/LTL infrastructure which is part of European Microkelvin Platform.


  1. 1.
    A. Laitinen, M. Kumar, P.J. Hakonen, arXiv:1710.04137 (2017)
  2. 2.
    Y.M. Blanter, M. Büttiker, Phys. Rep. 336, 1 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Z. Ezawa, Quantum Hall Effects Recent Theoretical and Experimental Developments, 3rd edn. (World Scientific, Singapore, 2013)CrossRefGoogle Scholar
  4. 4.
    A.J.M. Giesbers, L.A. Ponomarenko, K.S. Novoselov, A.K. Geim, J.C. Katsnelson, M.I. Maan, U. Zeitler, Phys. Rev. B 80, 201403(R) (2009)ADSCrossRefGoogle Scholar
  5. 5.
    A.F. Young, C.R. Dean, L. Wang, H. Ren, P. Cadden-Zimansky, T. Watanabe, K. Taniguchi, J. Hone, K.L. Shepard, P. Kim, Nature Phys. 8, 550 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    C. Zener, Proc. R. Soc. Lond. A 145, 523 (1934)ADSCrossRefGoogle Scholar
  7. 7.
    J. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1979)MATHGoogle Scholar
  8. 8.
    G.E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. 15, 116 (1972)Google Scholar
  9. 9.
    E.B. Sonin, Zh Eksp, Teor. Fiz. 64, 970 (1973)Google Scholar
  10. 10.
    E.B. Sonin, Dynamics of Quantised Vortices in Superfluids (Cambridge University Press, Cambridge, 2016)CrossRefMATHGoogle Scholar
  11. 11.
    O. Heinonen, P.L. Taylor, S.M. Girvin, Phys. Rev. B 30, 3016 (1984)ADSCrossRefGoogle Scholar
  12. 12.
    L. Eaves, P.S.S. Guimaraes, J.C. Portal, J. Phys. C 17, 6177 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    C.L. Yang, J. Zhang, R.R. Du, J.A. Simmons, J.L. Reno, Phys. Rev. Lett. 89, 076801 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Bykov, D.V. Dmitriev, I.V. Marchishin, S. Byrnes, S.A. Vitkalov, Appl. Phys. Lett. 100, 251602 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    L. Bliek, G. Hein, D. Jucknischke, V. Kose, J. Niemeyer, G. Weimann, W. Schlapp, Surf. Sci. 196, 156 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    O. Makarovsky, A. Neumann, L.A. Dickinson, L. Eaves, P.C. Main, M. Henini, S. Thoms, C.D.W. Wilkinson, Phys. E 12, 178 (2002)CrossRefGoogle Scholar
  17. 17.
    C.L. Yang, M.A. Zudov, T.A. Knuuttila, R.R. Du, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 91, 096803 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    X. Liu, Y. Zhu, L. Du, C. Yang, L. Lu, L. Pfeiffer, K. West, R.R. Du, Appl. Phys. Lett. 105, 182110 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    A.V. Goran, I.S. Strygin, A.A. Bykov, JETP Lett. 96, 803 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    S. Komiyama, T. Takamasu, S. Hiyamizum, S. Sasa, Solid State Commun. 54, 479 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    G. Ebert, K. von Klitzing, K. Ploog, G. Weimann, J. Phys. C 16, 5441 (1983)ADSCrossRefGoogle Scholar
  22. 22.
    M. Cage, R. Dziuba, B. Field, E. Williams, S. Girvin, A. Gossard, D. Tsui, R. Wagner, Phys. Rev. Lett. 51, 1374 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    G. Nachtwei, Phys. E 4, 79 (1999)CrossRefGoogle Scholar
  24. 24.
    S. Komiyama, Y. Kawaguchi, Phys. Rev. B 61, 2014 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    K. Chida, T. Hata, T. Arakawa, S. Matsuo, Y. Nishihara, T. Tanaka, T. Ono, K. Kobayashi, Phys. Rev. B 89, 1 (2014)CrossRefGoogle Scholar
  26. 26.
    T. Hata, T. Arakawa, K. Chida, S. Matsuo, K. Kobayashi, J. Phys. Condens. Matter 28, 055801 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    S. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge University Press, Cambridge, 1996)CrossRefGoogle Scholar
  28. 28.
    M. Kumar, A. Laitinen, P.J. Hakonen, arXiv:1611.02742 (2016)
  29. 29.
    Y. Huang, E. Sutter, N.N. Shi, J. Zheng, T. Yang, D. Englund, H.J. Gao, P. Sutter, ACS Nano 9, 10612 (2015)CrossRefGoogle Scholar
  30. 30.
    N. Tombros, A. Veligura, J. Junesch, J. Jasper van den Berg, P.J. Zomer, M. Wojtaszek, I.J. Vera Marun, H.T. Jonkman, B.J. van Wees, J. Appl. Phys. 109, 093702 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    A. Laitinen, M. Oksanen, A. Fay, D. Cox, M. Tomi, P. Virtanen, P.J. Hakonen, Nano Lett. 14, 3009 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    J. Gabelli, B. Reulet, Phys. Rev. B 80, 161203 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    E.D. Walsh, D.K. Efetov, G.H. Lee, M. Heuck, J. Crossno, T.A. Ohki, P. Kim, D. Englund, K.C. Fong, Phys. Rev. Appl. 8, 024022 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    F. Wu, L. Roschier, T. Tsuneta, M. Paalanen, T. Wang, P. Hakonen, AIP Conf. Proc. 850, 1482 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    F. Wu, P. Queipo, A. Nasibulin, T. Tsuneta, T. Wang, E. Kauppinen, P. Hakonen, Phys. Rev. Lett. 99, 156803 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    R. Danneau, F. Wu, M.F. Craciun, S. Russo, M.Y. Tomi, J. Salmilehto, A.F. Morpurgo, P.J. Hakonen, J. Low Temp. Phys. 153, 374 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    T. Nieminen, P. Lähteenmäki, Z. Tan, D. Cox, P.J. Hakonen, Rev. Sci. Instrum. 87, 114706 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    A. Rycerz, P. Recher, M. Wimmer, Phys. Rev. B 80, 125417 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    M. Kumar, A. Laitinen, D. Cox, P.J. Hakonen, Appl. Phys. Lett. 106, 263505 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    F. von Oppen, Phys. Rev. B 56, 9674 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    M. Prasad, M. Singh, Phys. Rev. B 29, 4803 (1984)ADSCrossRefGoogle Scholar
  42. 42.
    D.S. Golubev, A.D. Zaikin, Phys. Rev. B 70, 165423 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    V.A. Sverdlov, D.M. Kaplan, A.N. Korotkov, K.K. Likharev, Phys. Rev. B 64, 041302 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Low Temperature Laboratory, Department of Applied PhysicsAalto UniversityEspooFinland
  2. 2.Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronics and AutomationNational University of Defense TechnologyChangshaChina
  3. 3.Laboratoire Pierre Aigrain - École Normale supérieureParis Cedex 05France

Personalised recommendations