Journal of Low Temperature Physics

, Volume 191, Issue 3–4, pp 153–173 | Cite as

Morphological Simulation of Phase Separation Coupled Oscillation Shear and Varying Temperature Fields

  • Heping Wang
  • Xiaoguang Li
  • Kejun Lin
  • Xingguo Geng


This paper explores the effect of the shear frequency and Prandtl number (Pr) on the procedure and pattern formation of phase separation in symmetric and asymmetric systems. For the symmetric system, the periodic shear significantly prolongs the spinodal decomposition stage and enlarges the separated domain in domain growth stage. By adjusting the Pr and shear frequency, the number and orientation of separated steady layer structures can be controlled during domain stretch stage. The numerical results indicate that the increase in Pr and decrease in the shear frequency can significantly increase in the layer number of the lamellar structure, which relates to the decrease in domain size. Furthermore, the lamellar orientation parallel to the shear direction is altered into that perpendicular to the shear direction by further increasing the shear frequency, and also similar results for larger systems. For asymmetric system, the quantitative analysis shows that the decrease in the shear frequency enlarges the size of separated minority phases. These numerical results provide guidance for setting the optimum condition for the phase separation under periodic shear and slow cooling.


Lattice Boltzmann method Phase separation Prandtl number Shear frequency 



We acknowledge the financial support from the National Nature Science Foundation of China (Grant Nos. 51301139, 11404243, 10872172 and 51672224), the Shaanxi Provincial Natural Science Foundation (Grant No. 2016JM1003), the Fundamental Research Funds for the Central Universities (Grant No. 3102016ZY026), Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 15JK1313) and the Start-up Funding of Northwestern Polytechnical University (Grant No. G2016KY0306).


  1. 1.
    C. Brennen, Fundamentals of Multiphase Flow (Cambridge University Press, Cambridge, 2005)CrossRefzbMATHGoogle Scholar
  2. 2.
    K. Koppi, M. Tirrel, F. Bates, K. Almdal, R. Colby, J. Phys. II 2, 1941 (1992)Google Scholar
  3. 3.
    Y. Zhang, U. Wiesner, J. Chem. Phys. 3, 4784 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    Y. Zhang, U. Wiesner, Y. Yang, T. Pakula, W. Spiess, Macromolecules 29, 5427 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    H. Zhang, Y. Yang, Sci. China Ser. B 40, 53 (1997)CrossRefGoogle Scholar
  6. 6.
    E.K. Hobbie, S. Kim, C.C. Han, Phys. Rev. E 54, R5909 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    J. Escalante, M. Gradzielski, H. Hoffmann, K. Mortensen, Langmuir 16, 8653 (2000)CrossRefGoogle Scholar
  8. 8.
    A. Pommella, S. Caserta, S. Guido, Soft Matter 9, 7545 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    O. Glatter, I. Glatter, US. EP2604253 (2013)Google Scholar
  10. 10.
    T. Kato, K. Minewaki, K. Miyazaki, Y. Kawabata, T. Shikata, S. Komura, M. Fujii, Progr Colloid Polym Sci 129, 9 (2004)Google Scholar
  11. 11.
    U. Wiesner, Macromol. Chem. Phys. 198, 3319 (1997)CrossRefGoogle Scholar
  12. 12.
    N. Balsara, B. Hammouda, P. Kesani, S. Jonnalagadda, G. Straty, Macromolecules 27, 2566 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    N. Balsara, B. Hammouda, Phys. Rev. Lett. 72, 360 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    V. Starikovicius, B. Fraunhofer, ITWM 55, 1 (2003)Google Scholar
  15. 15.
    A. Jacot, M. Rappaz, R.C. Reed, Acta Mater. 46, 3949 (1998)CrossRefGoogle Scholar
  16. 16.
    A.P. Krekhov, L. Kramer, Phys. Rev. E 70, 264 (2004)CrossRefGoogle Scholar
  17. 17.
    E. Orlandini, M.R. Swift, J.M. Yeomans, Europhys. Lett. 32, 463 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Phys. Rev. E 54, 5041 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    M.E. Cates, J. Vollmer, A. Wagner, Philos. Trans. 361, 793 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    H. Liu, Y. Zhang, A.J. Valocchi, J. Comput. Phys. 231, 4433 (2012)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    H. Liu, A.J. Valocchi, Y. Zhang, Q. Kang, J. Comput. Phys. 256, 334 (2014)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    A.J. Wagner, J.M. Yeomans, Phys. Rev. E 59, 4366 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    J. Cahn, J. Hilliard, J. Chem. Phys. 28, 258 (1958)ADSCrossRefGoogle Scholar
  24. 24.
    J. Rowlinson, B. Widom, Molecular Theory of Capillarity Clarendon (Clarendon Press, Oxford, 1982)Google Scholar
  25. 25.
    S. Puri, V. Wadhawan, Kinetics of Phase Transitions (CRC Press, Boca Raton, 2009)CrossRefGoogle Scholar
  26. 26.
    L.E. Reichl, A Modern Course in Statistical Physics (Arnold, London, 1980)zbMATHGoogle Scholar
  27. 27.
    Z. Guo, B. Shi, C. Zheng, Int. J. Numer. Methods Fluids 39, 325 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    A. Lammura, G. Gonnella, Physica A 294, 295 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    A. Xu, G. Gonnella, A. Lamura, Phys. Rev. E 67, 056105 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    X. He, Q. Zou, L.S. Luo, M. Dembo, J. Stat. Phys. 87, 115 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    C.F. Ho, C. Chang, K.H. Lin, C.A. Lin, CMES Comput. Modeling Eng. Sci. 44, 137 (2009)MathSciNetGoogle Scholar
  32. 32.
    H. Wang, X. Geng, X. Li, D. Zang, Eur. Phys. J. E 39, 102 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    K. Koppi, M. Tirrell, F. Bates, Phys. Rev. Lett. 70, 1449 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    K. Jackson, J. Hunt, Trans. Metall. Soc. AIME 236, 1129 (1966)Google Scholar
  35. 35.
    N. Wang, Y.E. Kalay, R. Trivedi, Acta Mater. 59, 6604 (2011)CrossRefGoogle Scholar
  36. 36.
    R. Trivedi, N. Wang, Acta Mater. 60, 3140 (2012)CrossRefGoogle Scholar
  37. 37.
    R. Trivedi, P. Magnin, W. Kurz, Acta Metall. 35, 971 (1987)CrossRefGoogle Scholar
  38. 38.
    K. Matsuzaka, H. Jinnai, T. Koga, T. Hashimoto, Macromolecules 30, 1146 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    F. Qiu, H. Zhang, Y. Yang, J. Chem. Phys. 109, 1575 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    T. Ohta, H. Nozaki, M. Doi, J. Chem. Phys. 93, 2664 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Heping Wang
    • 1
  • Xiaoguang Li
    • 1
  • Kejun Lin
    • 1
  • Xingguo Geng
    • 1
  1. 1.Functional Soft Matter and Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations