Skip to main content
Log in

Visualization of a Coflow Jet in Superfluid Helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present preliminary results of the visualization of a submerged coflow jet of liquid helium produced by a fountain pump. The jet propagating inside the bulk superfluid is visualized with particle tracking velocimetry using hydrogen particles. We compare the characteristics of the coflow jet with those measured in classical fluids such as helium gas or water. In contrast to the classical experiments, a temperature-dependent angle of the jet is observed, suggesting that the flow may not be described quasi-classically, despite the strong coupling between normal and superfluid components by mutual friction. We report on the statistics of the velocities inferred from the particle trajectories recorded by a high-speed camera at 1.68 and 1.95 K, for jet velocities ranging from 47 to 4500 mm/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.S. Paoletti, R.B. Fiorito, K.R. Sreenivasan, D.P. Lathrop, Visualization of superfluid helium flow. J. Phys. Soc. Jpn. 77, 111007 (2008)

    Article  ADS  Google Scholar 

  2. W. Guo, M. La Mantia, D.P. Lathrop, S.W. Van Sciver, Visualization of two-fluid flows of superfluid helium-4. Proc. Natl. Acad. Sci. USA 111(Supplement 1), 4653 (2014)

    Article  Google Scholar 

  3. P. Hrubcová, P. Švančara, M. La Mantia, Vorticity enhancement in thermal counter flow of superfluid helium. Phys. Rev. B 97, 064512 (2018)

    Article  ADS  Google Scholar 

  4. M. La Mantia, Particle trajectories in thermal counter flow of superfluid helium in a wide channel of square cross section. Phys. Fluids 28, 024102 (2016)

    Article  ADS  Google Scholar 

  5. M. La Mantia, L. Skrbek, Quantum turbulence visualized by particle dynamics. Phys. Rev. B 90, 014519 (2014)

    Article  ADS  Google Scholar 

  6. J. Allen, H. Jones, New phenomena connected with heat flow in helium II. Nature 141, 243 (1938)

    Article  ADS  Google Scholar 

  7. A. Nakano, M. Murakami, K. Kunisada, The flow structure of a thermal counterflow jet in He II. J. Cryogenics Supercond. Soc. Jpn. 29, 194 (1994)

    Article  Google Scholar 

  8. N. Ichikawa, M. Murakami, High Reynolds Number Flows Using Liquid and Gaseous Helium (Springer, New York, 1991), pp. 209–214

    Book  Google Scholar 

  9. M. Murakami, T. Takakoshi, M. Maeda, A. Nakano, PIV measurement result of superfluid He II thermal counterflow jet. AIP Conf. Proc. 985, 183–190 (2008)

    Article  ADS  Google Scholar 

  10. M. Murakami, T. Takakoshi, M. Maeda, R. Tsukahara, N. Yokota, Application of particle image velocimetry for measuring He II thermal counter flow jets. Cryogenics 49, 543 (2009)

    Article  ADS  Google Scholar 

  11. E. Zemma, J. Luzuriaga, Anomalous trajectories of H\(_{2}\) solid particles observed near a sphere oscillating in superfluid turbulent \(^{4}\)He. J. Low Temp. Phys. 173, 71 (2013)

    Article  ADS  Google Scholar 

  12. E. Zemma, M. Tsubota, J. Luzuriaga, Possible visualization of a superfluid vortex loop attached to an oscillating beam. J. Low Temp. Phys. 179, 310 (2015)

    Article  ADS  Google Scholar 

  13. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217–1274 (1998)

    Article  ADS  Google Scholar 

  14. M. Amigó, T. Herrera, L. Neñer, L.P. Gavensky, F. Turco, J. Luzuriaga, A quantitative experiment on the fountain effect in superfluid helium. Eur. J. Phys. 38, 055103 (2017)

    Article  Google Scholar 

  15. Midlik, Š., Jackson, M.J., Schmoranzer, D.: Superflows Probed by a Vibrating Wire Resonator. In: Šimurda, D., Bodnár, T. (eds), Proceedings of Topical Problems of Fluid Mechanics 2018, pp. 209–216, Prague (2018). https://doi.org/10.14311/TPFM.2018.028

  16. I.F. Sbalzarini, P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182 (2005)

    Article  Google Scholar 

  17. Duda, D.: Ph.D. thesis, Charles University (2017)

  18. M. Murakami, N. Ichikawa, Flow visualization study of thermal counter flow jet in He II. Cryogenics 29(4), 438 (1989)

    Article  ADS  Google Scholar 

  19. M. Blažková, T.V. Chagovets, M. Rotter, D. Schmoranzer, L. Skrbek, Cavitation in liquid helium observed in a flow due to a vibrating quartz fork. J. Low Temp. Phys. 150, 194–199 (2008)

    Article  ADS  Google Scholar 

  20. M. Blažková, D. Schmoranzer, L. Skrbek, On cavitation in liquid helium in a flow due to a vibrating quartz fork. Low Temp. Phys. 34, 298 (2008)

    Article  ADS  Google Scholar 

  21. D. Duda, P. Švančara, M. La Mantia, M. Rotter, D. Schmoranzer, O. Kolosov, L. Skrbek, Cavitation bubbles generated by vibrating quartz tuning fork in liquid \(^{4}\)He close to the \(\lambda \)-transition. J. Low Temp. Phys. 187, 376–382 (2017)

    Article  ADS  Google Scholar 

  22. L.D. Landau, E.M. Lifshitz, A Course in Theoretical Physics: Fluid Mechanics, vol. 6 (Pergamon Press Ltd., Oxford, 1987)

    Google Scholar 

  23. Labus, T.L., Symons, E.P.: Experimental investigation of an axisymmetric free jet with an initially uniform velocity profile, NASA TN-D-6783 (1972)

  24. I. Wygnanski, H. Fiedler, Some measurements in the self-preserving jet. J. Fluid Mech. 38, 577 (1969)

    Article  ADS  Google Scholar 

  25. S.S. Aleyasin, M.F. Tachie, M. Koupriyanov, PIV measurements in the near and intermediate field regions of jets issuing from eight different nozzle geometries. Flow Turbul. Combust. 99, 329 (2017)

    Article  Google Scholar 

  26. Y.A. Sergeev, C.F. Barenghi, Particles-vortex interactions and flow visualization in \(^{4}\)He. J. Low Temp. Phys. 157, 429 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Czech Science Foundation project GAČR 17-03572S and by Grant 7AMB15AR026 under the EU-7AMB Czech–Argentine MOBILITY scheme of Czech Republic–Argentine Republic cooperation agreement ARC/14/30, without which this work would not have been possible. M.J.J. acknowledges personal support from Vakuum Praha spol. s r.o. We would also like to thank M. La Mantia, L. Skrbek and P. Švančara for useful comments and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Jackson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, M.J., Schmoranzer, D. & Luzuriaga, J. Visualization of a Coflow Jet in Superfluid Helium. J Low Temp Phys 196, 197–203 (2019). https://doi.org/10.1007/s10909-018-02118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-02118-x

Keywords

Navigation