Journal of Low Temperature Physics

, Volume 191, Issue 3–4, pp 123–135 | Cite as

Conductivity of Weakly Disordered Metals Close to a “Ferromagnetic” Quantum Critical Point

Article

Abstract

We calculate analytically the conductivity of weakly disordered metals close to a “ferromagnetic” quantum critical point in the low-temperature regime. Ferromagnetic in the sense that the effective carrier potential \(V(q,\omega )\), due to critical fluctuations, is peaked at zero momentum \(q=0\). Vertex corrections, due to both critical fluctuations and impurity scattering, are explicitly considered. We find that only the vertex corrections due to impurity scattering, combined with the self-energy, generate appreciable effects as a function of the temperature T and the control parameter a, which measures the proximity to the critical point. Our results are consistent with resistivity experiments in several materials displaying typical Fermi liquid behaviour, but with a diverging prefactor of the \(T^2\) term for small a.

Keywords

Conductivity calculation Vertex corrections Quantum critical point Fermi liquid Weak disorder 

References

  1. 1.
    J. Paglione, M.A. Tanatar, D.G. Hawthorn, F. Ronning, R.W. Hill, M. Sutherland, L. Taillefer, C. Petrovic, Phys. Rev. Lett. 97, 106606 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    A. Bianchi, R. Movshovich, I. Vekhter, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. Lett. 91, 257001 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    S.A. Grigera, R.S. Perry, A.J. Schofield, M. Chiao, S.R. Julian, G.G. Lonzarich, S.I. Ikeda, Y. Maeno, A.J. Millis, A.P. Mackenzie, Science 294, 329 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, F. Steglich, Phys. Rev. Lett. 89, 056402 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    P. Gegenwart, J. Custers, Y. Tokiwa, C. Geibel, F. Steglich, Phys. Rev. Lett. 94, 076402 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    N.P. Butch, K. Jin, K. Kirshenbaum, R.L. Greene, J. Paglione, PNAS 109, 8440 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    T. Shibauchi, L. Krusin-Elbaum, M. Hasegawa, Y. Kasahara, R. Okazaki, Y. Matsuda, PNAS 105, 7120 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    L. Balicas, S. Nakatsuji, H. Lee, P. Schlottmann, T.P. Murphy, Z. Fisk, Phys. Rev. B 72, 064422 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    S. Nakatsuji, K. Kuga, Y. Machida, T. Tayama, T. Sakakibara, Y. Karaki, H. Ishimoto, S. Yonezawa, Y. Maeno, E. Pearson, G.G. Lonzarich, L. Balicas, H. Lee, Z. Fisk, Nat. Phys. 4, 603 (2008)CrossRefGoogle Scholar
  10. 10.
    J.G. Analytis, H.-H. Kuo, R.D. McDonald, M. Wartenbe, P.M.C. Rourke, N.E. Hussey, I.R. Fisher, Nat. Phys. 10, 194 (2014)CrossRefGoogle Scholar
  11. 11.
    H.V. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    G. Kastrinakis, Europhys. Lett. 112, 67001 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Cliffwoods, NY, 1964)MATHGoogle Scholar
  14. 14.
    P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    J. Hertz, Phys. Rev. B 14, 1165 (1976)ADSCrossRefGoogle Scholar
  16. 16.
    A.J. Millis, Phys. Rev. B 48, 7183 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    G. Kastrinakis, Phys. Rev. B 72, 075137 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    G.D. Mahan, Many-Particle Physics, 2nd edn. (Plenum Press, New York, 1990). (the relevant material is mostly in section 3 of chapter 7)CrossRefGoogle Scholar
  19. 19.
    L. Dell’ Anna, W. Metzner, Phys. Rev. Lett. 98, 136402 (2007). (erratum Phys. Rev. Lett. 103, 159904 (2009))ADSCrossRefGoogle Scholar
  20. 20.
    A.V. Chubukov, D.L. Maslov, Phys. Rev. Lett. 103, 216401 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    S.S. Lee, Phys. Rev. B 80, 165102 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology - Hellas (FORTH)IraklioGreece

Personalised recommendations