Skip to main content
Log in

Fermions in Two Dimensions: Scattering and Many-Body Properties

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Ultracold atomic Fermi gases in two dimensions (2D) are an increasingly popular topic of research. The interaction strength between spin-up and spin-down particles in two-component Fermi gases can be tuned in experiments, allowing for a strongly interacting regime where the gas properties are yet to be fully understood. We have probed this regime for 2D Fermi gases by performing T = 0 ab initio diffusion Monte Carlo calculations. The many-body dynamics are largely dependent on the two-body interactions; therefore, we start with an in-depth look at scattering theory in 2D. We show the partial-wave expansion and its relation to the scattering length and effective range. Then, we discuss our numerical methods for determining these scattering parameters. We close out this discussion by illustrating the details of bound states in 2D. Transitioning to the many-body system, we use variationally optimized wave functions to calculate ground-state properties of the gas over a range of interaction strengths. We show results for the energy per particle and parametrize an equation of state. We then proceed to determine the chemical potential for the strongly interacting gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  2. S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)

    Article  ADS  Google Scholar 

  3. J. Levinsen, M.M. Parish, Annu. Rev. Cold At. Mol. 3, 1 (2015)

    Article  Google Scholar 

  4. J. Carlson, S.Y. Chang, V.R. Pandharipande, K.E. Schmidt, Phys. Rev. Lett. 91, 050401 (2003)

    Article  ADS  Google Scholar 

  5. S.Y. Chang, V.R. Pandharipande, J. Carlson, K.E. Schmidt, Phys. Rev. A 70, 043602 (2004)

    Article  ADS  Google Scholar 

  6. G.E. Astrakharchik, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. Lett. 93, 200404 (2004)

    Article  ADS  Google Scholar 

  7. M.M. Forbes, S. Gandolfi, A. Gezerlis, Phys. Rev. Lett. 106, 235303 (2011)

    Article  ADS  Google Scholar 

  8. S. Gandolfi, K.E. Schmidt, J. Carlson, Phys. Rev. A 83, 041601 (2011)

    Article  ADS  Google Scholar 

  9. M.M. Forbes, S. Gandolfi, A. Gezerlis, Phys. Rev. A 86, 053603 (2012)

    Article  ADS  Google Scholar 

  10. A. Gezerlis, J. Carlson, Phys. Rev. C 77, 032801 (2008)

    Article  ADS  Google Scholar 

  11. J. Carlson, S. Gandolfi, A. Gezerlis, Prog. Theor. Exp. Phys. 2012, 01A209 (2012). doi:10.1093/ptep/pts031

    Article  Google Scholar 

  12. M. Stein, X.-G. Huang, A. Sedrakian, J.W. Clark, Phys. Rev. C 86, 062801(R) (2012)

    Article  ADS  Google Scholar 

  13. S. Gandolfi, A. Gezerlis, J. Carlson, Annu. Rev. Nucl. Part. Sci. 65, 303 (2015)

    Article  ADS  Google Scholar 

  14. M. Buraczynski, A. Gezerlis, Phys. Rev. Lett. 116, 152501 (2016)

    Article  ADS  Google Scholar 

  15. D. Lacroix, A. Boulet, M. Grasso, C.-J. Yang, arXiv:1704.08454

  16. K. Günter, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, Phys. Rev. Lett. 95, 230401 (2005)

    Article  Google Scholar 

  17. X.-J. Liu, H. Hu, P.D. Drummond, Phys. Rev. B 82, 054524 (2010)

    Article  ADS  Google Scholar 

  18. K. Martiyanov, V. Makhalov, A. Turlapov, Phys. Rev. Lett. 105, 030404 (2010)

    Article  ADS  Google Scholar 

  19. M. Valiente, N.T. Zinner, K. Molmer, Phys. Rev. A 84, 063626 (2011)

    Article  ADS  Google Scholar 

  20. B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, W. Zwerger, M. Köhl, Phys. Rev. Lett. 106, 105301 (2011)

    Article  ADS  Google Scholar 

  21. M. Feld, B. Fröhlich, E. Vogt, M. Koschorreck, M. Köhl, Nature 480, 75–78 (2011)

    Article  ADS  Google Scholar 

  22. A.A. Orel, P. Dyke, M. Delehaye, C.J. Vale, H. Hu, New J. Phys. 13, 113032 (2011)

    Article  ADS  Google Scholar 

  23. V. Makhalov, K. Martiyanov, A. Turlapov, Phys. Rev. Lett. 112, 045301 (2014)

    Article  ADS  Google Scholar 

  24. M. Bauer, M.M. Parish, T. Enss, Phys. Rev. Lett. 112, 135302 (2014)

    Article  ADS  Google Scholar 

  25. B.C. Mulkerin, K. Fenech, P. Dyke, C.J. Vale, X.-J. Liu, H. Hu, Phys. Rev. A 92, 063636 (2015)

    Article  ADS  Google Scholar 

  26. L. He, H. Lü, G. Cao, H. Hu, X.-J. Liu, Phys. Rev. A 92, 023620 (2015)

    Article  ADS  Google Scholar 

  27. M. Klawunn, Phys. Lett. A 380, 2650 (2016)

    Article  ADS  Google Scholar 

  28. E.R. Anderson, J.E. Drut, Phys. Rev. Lett. 115, 115301 (2015)

    Article  ADS  Google Scholar 

  29. L. He, Ann. Phys. (N. Y.) 373, 470 (2016)

    Article  ADS  Google Scholar 

  30. W. Ong, C.-Y. Cheng, I. Arakelyan, J.E. Thomas, Phys. Rev. Lett. 114, 110403 (2015)

    Article  ADS  Google Scholar 

  31. P.A. Murthy, I. Boettcher, L. Bayha, M. Holzmann, D. Kedar, M. Neidig, M.G. Ries, A.N. Wenz, G. Zürn, S. Jochim, Phys. Rev. Lett. 115, 010401 (2015)

    Article  ADS  Google Scholar 

  32. M.G. Ries, A.N. Wenz, G. Zürn, L. Bayha, I. Boettcher, D. Kedar, P.A. Murthy, M. Neidig, T. Lompe, S. Jochim, Phys. Rev. Lett. 114, 230401 (2015)

    Article  ADS  Google Scholar 

  33. K. Fenech, P. Dyke, T. Peppler, M.G. Lingham, S. Hoinka, H. Hu, C.J. Vale, Phys. Rev. Lett. 116, 045302 (2016)

    Article  ADS  Google Scholar 

  34. I. Boettcher, L. Bayha, D. Kedar, P.A. Murthy, M. Neidig, M.G. Ries, A.N. Wenz, G. Zürn, S. Jochim, T. Enss, Phys. Rev. Lett. 116, 045303 (2016)

    Article  ADS  Google Scholar 

  35. L. Rammelmüller, W.J. Porter, J.E. Drut, Phys. Rev. A 93, 033639 (2016)

    Article  ADS  Google Scholar 

  36. K. Martiyanov, T. Barmashova, V. Makhalov, A. Turlapov, Phys. Rev. A 93, 063622 (2016)

    Article  ADS  Google Scholar 

  37. C. Cheng, J. Kangara, I. Arakelyan, J.E. Thomas, Phys. Rev. A 94, 031606 (2016)

    Article  ADS  Google Scholar 

  38. C. Luciuk, S. Smale, F. Böttcher, H. Sharum, B.A. Olsen, S. Trotzky, T. Enss, J.H. Thywissen, Phys. Rev. Lett. 118, 130405 (2017)

    Article  ADS  Google Scholar 

  39. K. Hueck, N. Luick, L. Sobirey, J. Siegl, T. Lompe, H. Moritz, arXiv:1704.06315

  40. K. Miyake, Prog. Theor. Phys. 69, 1794 (1983)

    Article  ADS  Google Scholar 

  41. M. Randeria, J.-M. Duan, L.-Y. Shieh, Phys. Rev. Lett. 62, 981 (1989)

    Article  ADS  Google Scholar 

  42. M. Randeria, J.-M. Duan, L.-Y. Shieh, Phys. Rev. B 41, 327 (1990)

    Article  ADS  Google Scholar 

  43. G. Bertaina, S. Giorgini, Phys. Rev. Lett. 106, 110403 (2011)

    Article  ADS  Google Scholar 

  44. H. Shi, S. Chiesa, S. Zhang, Phys. Rev. A 92, 033603 (2015)

    Article  ADS  Google Scholar 

  45. A. Galea, H. Dawkins, S. Gandolfi, A. Gezerlis, Phys. Rev. A 93, 023602 (2016)

    Article  ADS  Google Scholar 

  46. S.K. Adhikari, Am. J. Phys. 54, 362 (1986)

    Article  ADS  Google Scholar 

  47. N.N. Khuri, A. Martin, J.-M. Richard, T.T. Wu, J. Math. Phys. 50, 072105 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  48. S.K. Adhikari, W.G. Gibson, T.K. Lim, J. Chem. Phys. 85, 5580 (1986)

    Article  ADS  Google Scholar 

  49. L. Madeira, S. Gandolfi, K.E. Schmidt, Phys. Rev. A 95, 053603 (2017)

    Article  ADS  Google Scholar 

  50. J.R. Engelbrecht, M. Randeria, L. Zhang, Phys. Rev. B 45, 10135 (1992)

    Article  ADS  Google Scholar 

  51. D.S. Petrov, M.A. Baranov, G.V. Shlyapnikov, Phys. Rev. A 67, 031601(R) (2003)

    Article  ADS  Google Scholar 

  52. T. Enss, Private communication (2015)

Download references

Acknowledgements

The authors would like to thank G. E. Astrakharchik, T. Enss, J. Thywissen, and E. Vitali for helpful discussions. This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canada Foundation for Innovation (CFI), the Early Researcher Award (ERA) program of the Ontario Ministry of Research, Innovation and Science, the US Department of Energy, Office of Nuclear Physics, under Contract DE-AC52-06NA25396, and the LANL LDRD program. Computational resources were provided by SHARCNET, NERSC, and Los Alamos Open Supercomputing. The authors would like to acknowledge the ECT* for its warm hospitality during the “Superfluidity and Pairing Phenomena” workshop in March 2017, where part of this work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Gezerlis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galea, A., Zielinski, T., Gandolfi, S. et al. Fermions in Two Dimensions: Scattering and Many-Body Properties. J Low Temp Phys 189, 451–469 (2017). https://doi.org/10.1007/s10909-017-1803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1803-1

Keywords

Navigation