Advertisement

Journal of Low Temperature Physics

, Volume 187, Issue 1–2, pp 62–70 | Cite as

Radiation Effects in Solid Nitrogen

  • E. V. Savchenko
  • I. V. Khyzhniy
  • S. A. Uyutnov
  • M. A. Bludov
  • A. P. Barabashov
  • G. B. Gumenchuk
  • V. E. Bondybey
Article

Abstract

The radiation effects and relaxation processes in pre-irradiated by an electron beam solid \(\hbox {N}_{2}\) have been studied with a focus on the behavior of the so far unidentified emission band at 360 nm. The study was performed using optical and current spectroscopy methods: cathodoluminescence and developed by our group nonstationary luminescence, as well as spectrally resolved thermally stimulated luminescence, and thermally stimulated exoelectron emission. The measurements cover the temperature range of the \(\alpha \)-phase existence. Activation spectroscopy evidenced connection of the 360 nm band with the neutralization reaction. Possible scenarios of \(\hbox {N}_{4}^{+}\) neutralization via dissociative recombination are discussed, and interpretation of the 360 nm band is suggested.

Keywords

Charged centers Neutralization Relaxation Tetranitrogen 

Notes

Acknowledgements

The authors cordially thank Profs. Minh Tho Nguyen, Peter Feulner and Giovanni Strazzulla for stimulating discussions.

References

  1. 1.
    M.T. Nguyen, Coord. Chem. Rev. 244, 93 (2003)CrossRefGoogle Scholar
  2. 2.
    A.M. Bass, H.P. Broida, Phys. Rev. 101, 1740 (1956)ADSCrossRefGoogle Scholar
  3. 3.
    R.L. Hudson, M.H. Moore, Astrophys. J. 568, 1095 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    J.C. McLennan, G.M. Shrum, Proc. R. Soc. A 106, 138 (1924)ADSCrossRefGoogle Scholar
  5. 5.
    O. Oehler, D.A. Smith, K. Dressler, J. Chem. Phys. 66, 2097 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    I.Ya. Fugol’, Yu.B. Poltoratskii, E.V. Savchenko, JETP Lett. 24, 3 (1976)Google Scholar
  7. 7.
    F. Coletti, A.M. Bonnot, Chem. Phys. Lett. 45, 580 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    Yu.B. Poltoratskii, V.M. Stepanenko, I.Ya. Fugol’, Sov. J. Low Temp. Phys. 7, 60 (1981)Google Scholar
  9. 9.
    C.S. Jamieson, R.I. Kaiser, Chem. Phys. Lett. 440, 98 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Y.-J. Wu, C.Y.R. Wu, S.-L. Chou, M.-Y. Lin, H.-C. Lu, J.-I. Lo, B.-M. Cheng, Astrophys. J. 746, 175 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    I. Khyzhniy, E. Savchenko, S. Uyutnov, G. Gumenchuk, A. Ponomaryov, V. Bondybey, Rad. Meas. 45, 353 (2010). doi: 10.1016/j.radmeas.2009.11.020 CrossRefGoogle Scholar
  12. 12.
    E.V. Savchenko, I.V. Khyzhniy, S.A. Uyutnov, A.P. Barabashov, G.B. Gumenchuk, M.K. Beyer, A.N. Ponomaryov, V.E. Bondybey, J. Phys. Chem. A 119, 2475 (2015). doi: 10.1021/jp5087575 CrossRefGoogle Scholar
  13. 13.
    Y.-J. Wu, H.-F. Chen, S.-J. Chuang, T.-P. Huang, Astrophys. J. 768, 83 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    E. Savchenko, I. Khyzhniy, S. Uyutnov, M. Bludov, G. Gumenchuk, V. Bondybey, Radiat. Meas. 90C, 1 (2016). doi: 10.1016/j.radmeas.2015.12.044 CrossRefGoogle Scholar
  15. 15.
    E. Savchenko, I. Khyzhniy, S. Uyutnov, M. Bludov, G. Gumenchuk, V. Bondybey, Phys. Status Solidi B. doi: 10.1002/pssb.201600406
  16. 16.
    R.E. Boltnev, I.B. Bykhalo, I.N. Krushinskaya, A.A. Pelmenev, S. Mao, A. Meraki, P.T. McColgan, D.M. Lee, V.V. Khmelenko, PCCP 18, 16013 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    A.A. Pelmenev, I.N. Krushinskaya, I.B. Bykhalo, R.E. Boltnev, Low Temp. Phys. 42, 224 (2016). doi: 10.1063/1.4942760 ADSCrossRefGoogle Scholar
  18. 18.
    V.G. Storchak, D.G. Eshchenko, J.H. Brewer, S.P. Cottrell, S.F.J. Cox, E. Karlsson, R.W. Wappling, J. Low Temp. Phys. 122, 527 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    E.V. Savchenko, I.V. Khyzhniy, S.A. Uyutnov, A.N. Ponomaryov, G.B. Gumenchuk, V.E. Bondybey, Low Temp. Phys. 39, 446 (2013). doi: 10.1063/1.4807046 ADSCrossRefGoogle Scholar
  20. 20.
    E. Savchenko, I. Khyzhniy, S. Uyutnov, A. Barabashov, G. Gumenchuk, A. Ponomaryov, V. Bondybey, Phys. Status Solidi (C) 12, 49 (2015). doi: 10.1002/pssc.201400166 CrossRefGoogle Scholar
  21. 21.
    A.P. Barabashov, I.V. Khyzhniy, S.A. Uyutnov, M.A. Bludov, E.V. Savchenko, Fiz. Nizk. Temp. 42, 1512 (2016)Google Scholar
  22. 22.
    I.Ya. Fugol’, Yu.B. Poltoratski, Yu.I. Rybalko, Low Temp. Phys. 4, 496 (1978)Google Scholar
  23. 23.
    E.V. Savchenko, I.V. Khyzhniy, S.A. Uyutnov, A.N. Ponomaryov, G.B. Gumenchuk, V.E. Bondybey, Proced. Phys. 76, 111 (2015). doi: 10.1016/j.phpro.2015.10.021 CrossRefGoogle Scholar
  24. 24.
    E.V. Savchenko, Yu.A. Dmitriev, in New Aspects of Relaxation Processes in Cryogenic Solids, ed. by R.P. Valencia. Applied Physics in the 21st Century (Horizons in World Physics. Volume 269) (Nova Science Publishers, New York, 2010), p. 113Google Scholar
  25. 25.
    M.A. Allodi, R.A. Baragiola, G.A. Baratta, M.A. Barucci, G.A. Blake, P. Boduch, J.R. Brucato, C. Contreras, S.H. Cuylle, D. Fulvio, M.S. Gudipati, S. Ioppolo, Z. Kaňuchová, A. Lignell, H. Linnartz, M.E. Palumbo, U. Raut, H. Rothard, F. Salama, E.V. Savchenko, E. Sciamma-O’Brien, G. Strazzulla, Space Sci. Rev. 180, 101 (2013). doi: 10.1007/s11214-013-0020-8 ADSCrossRefGoogle Scholar
  26. 26.
    C.M. Herzfeld, H.P. Broida, Phys. Rev. 101, 606 (1956)ADSCrossRefGoogle Scholar
  27. 27.
    V.F. Elesin, N.N. Degtyarenko, K.S. Pazhitnykh, N.V. Matveev, Russ. Phys. J. 52, 1224 (2009)CrossRefGoogle Scholar
  28. 28.
    L.B. Knight Jr., K.D. Johannessen, D.C. Cobranchi, E.A. Earl, D. Feller, E.R. Davidson, J. Chem. Phys. 87, 885 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • E. V. Savchenko
    • 1
  • I. V. Khyzhniy
    • 1
  • S. A. Uyutnov
    • 1
  • M. A. Bludov
    • 1
  • A. P. Barabashov
    • 1
  • G. B. Gumenchuk
    • 2
  • V. E. Bondybey
    • 2
  1. 1.B. Verkin Institute for Low Temperature Physics and EngineeringNASUKharkivUkraine
  2. 2.Lehrstuhl für Physikalische Chemie IITUMGarching b. MunichGermany

Personalised recommendations