Journal of Low Temperature Physics

, Volume 186, Issue 1–2, pp 21–43 | Cite as

Vortex Matter in Highly Strained Nb\(_{75}\)Zr\(_{25}\): Analogy with Viscous Flow of Disordered Solids

  • Jagdish Chandra
  • Meghmalhar Manekar
  • V. K. Sharma
  • Puspen Mondal
  • Pragya Tiwari
  • S. B. Roy


We present the results of magnetization and magneto-transport measurements in the superconducting state of an as-cast Nb\(_{75}\)Zr\(_{25}\) alloy. We also report the microstructure of our sample at various length scales by using optical, scanning electron and transmission electron microscopies. The information of microstructure is used to understand the flux pinning properties in the superconducting state within the framework of collective pinning. The magneto-transport measurements show a non-Arrhenius behaviour of the temperature- and field-dependent resistivity across the resistive transition and is understood in terms of a model for viscous flow of disordered solids which is popularly known as the ‘shoving model’. The activation energy for flux flow is assumed to be mainly the elastic energy stored in the flux-line lattice. The scaling of pinning force density indicates the presence of two pinning mechanisms of different origins. The elastic constants of the flux-line lattice are used to estimate the length scale of vortex lattice movement, or the volume displaced by the flux-line lattice. It appears that the vortex lattice displacement estimated from elastic energy considerations is of the same order of magnitude as that of the flux bundle hopping length during flux flow. Our results could provide possible directions for establishing a framework where vortex matter and glass-forming liquids or amorphous solids can be treated in a similar manner for understanding the phenomenon of viscous flow in disordered solids or more generally the pinning and depinning properties of elastic manifolds in random media. It is likely that the vortex molasses scenario is more suited to explain the vortex dynamics in conventional low-T\(_C\) superconductors.


Vortex matter Collective pinning Viscous flow 



The authors wish to acknowledge Dr. L. S. Sharath Chandra for help with magnetization measurements, Dr. Ashish Khandelwal for help with current–voltage characteristics, Dr. Tapas Ganguli for help with the X-ray diffraction measurements and Dr. A. K. Srivastava for guidance on the transmission electron microscopy measurements. We also thank the Cryo-engineering and Cryo-module Development Division for the liquid helium used in this study.


  1. 1.
    Y.B. Kim, C.F. Hempstead, A.R. Strnad, Phys. Rev. 131, 2486 (1963)ADSCrossRefGoogle Scholar
  2. 2.
    Y.B. Kim, C.F. Hempstead, A.R. Strnad, Phys. Rev. A 139, 1163 (1965)ADSCrossRefGoogle Scholar
  3. 3.
    K.A. Müller, M. Takashige, J.G. Bednorz, Phys. Rev. Lett. 58, 1143 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    M.P.A. Fisher, Phys. Rev. Lett. 62, 1415 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Yeshurun, A.P. Malozemoff, Phys. Rev. Lett. 60, 2202 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    M.F. Schmidt, N.E. Israeloff, A.M. Goldman, Phys. Rev. B. 48, 3404 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    R.C. Budhani, M. Suenaga, D.O. Welch, Solid State Commun. 81, 179 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    C. Reichhardt, A. van Otterlo, G.T. Zimányi, Phys. Rev. Lett. 84, 1994 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    T.K. Worthington, M. Fisher, D.A. Huse, J. Toner, A.D. Marwick, T. Zabel, C.A. Feild, F. Holtzberg, Phys. Rev. B 46, 11854 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    R. Lortz, C. Meingast, A.I. Rykov, S. Tajima, J. Low Temp. Phys 147, 365 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    D.S. Fisher, M.P.A. Fisher, D.A. Huse, Phys. Rev. B 43, 130 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    T. Giamarchi, S. Bhattacharya, in High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy, Lecture Notes in Physics, vol. 595, ed. by C. Berthier, L.P. Levy, G. Martinez (Springer, Berlin, 2001), p. 314. And references thereinGoogle Scholar
  14. 14.
    T. Giamarchi, P. Le Doussal, Phys. Rev. Lett. 72, 1530 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    T. Giamarchi, P. Le Doussal, Phys. Rev. B 52, 1242 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    A.I. Larkin, Y.N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    G. Blatter, M.V. Feigel’man, Y.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    T. Giamarchi, P. Le Doussal, Phys. Rev. Lett. 76, 3408 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    P. Le Doussal, T. Giamarchi, Phys. Rev. B 57, 11356 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    K.M. Ralls, P.W. Heitman, R.M. Rose, J. Less-Common Met. 139, 67 (1988)CrossRefGoogle Scholar
  21. 21.
    E.J. Kramer, J. Appl. Phys. 44, 1360 (1973)ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Dyre, N.B. Olsen, T. Christensen, Phys. Rev. B 53, 2171 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    G.K. Williamson, W.H. Hall, Acta. Metall. 1, 22 (1953)CrossRefGoogle Scholar
  24. 24.
    H. Biloni, W.J. Boettinger, in Physical Metallurgy, vol. 1, ed. by R.W. Cahn, P. Haasen, 4th edn. (Elsevier Science B. V., North Holland, 1996), chap. 8Google Scholar
  25. 25.
    P.E.J. Flewitt, Scripta Metall. 5, 579 (1971)CrossRefGoogle Scholar
  26. 26.
    A. Trampert, Phys. E 13, 1119 (2002)CrossRefGoogle Scholar
  27. 27.
    J.R. Clem, Z. Hao, Phys. Rev. B 48, 13774 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    O.B. Hyun, Phys. Rev. B 48, 1244 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    P. Mondal, M. Manekar, R. Kumar, T. Ganguli, S.B. Roy, Appl. Phys. Lett. 92, 052507 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    C.C. Wang, R. Zeng, X. Xu, S.X. Dou, J. Appl. Phys. 108, 093907 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    M. Nikolo, X. Shi, E.S. Choi, J. Jiang, J.D. Weiss, E.E. Hellstrom, J. Supercond. Nov. Magn. 27, 2231 (2014)CrossRefGoogle Scholar
  32. 32.
    D.H. Kim, K.E. Gray, R.T. Kampwirth, D.M. McKay, Phys. Rev. B 42, 6249 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    J.C. Dyre, T. Christensen, N.B. Olsen, J. Non-Cryst, Solids 352, 4635 (2006). doi: 10.1016/j.jnoncrysol.2006.02.173 Google Scholar
  34. 34.
    S.L. Liu, H.M. Shao, Z.H. Wang, Supercond. Sci. Technol. 20, 444 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    J.C. Dyre, N.B. Olsen, Phys. Rev. E 69, 042501 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    D.R. Nelson, H.S. Seung, Phys. Rev. B 39, 9153 (1989)ADSCrossRefGoogle Scholar
  37. 37.
    E.H. Brandt, Phys. B 169, 91 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    E.H. Brandt, Phys. Rev. B 34, 6514 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    L.D. Cooley, X. Song, J. Jiang, D.C. Larbalestier, T. He, K.A. Regan, R.J. Cava, Phys. Rev. B 65, 214518 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    L.A. Bonney, T.C. Wills, D.C. Larbalestier, J. Appl. Phys. 77, 6377 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    D. Dew-Hughes, Philos. Mag. 30, 293 (1974)ADSCrossRefGoogle Scholar
  42. 42.
    A. Godeke, B. ten Haken, H.H.J. ten Kate, D.C. Larbalestier, Supercond. Sci. Technol. 19, R100 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    M. Matin, L.S.S. Chandra, M.K. Chattopadhyay, R.K. Meena, R. Kaul, M.N. Singh, A.K. Sinha, S.B. Roy, J. Appl. Phys. 113, 163903 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    R. Griessen, W. Hai-hu, A.J.J. van Dalen, B. Dam, J. Rector, H.G. Schnack, S. Libbrecht, E. Osquiguil, Y. Bruynseraede, Phys. Rev. Lett. 72, 1910 (1994)ADSCrossRefGoogle Scholar
  45. 45.
    M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Phys. Rev. Lett. 63, 2303 (1989)ADSCrossRefGoogle Scholar
  46. 46.
    L. Cesnak, F. Gömöry, P. Kováč, J. Šouc, K. Fröhlich, T. Melišek, G. Hilscher, M. Puttner, T. Holubar, Appl. Supercond. 4, 277 (1996)CrossRefGoogle Scholar
  47. 47.
    M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)Google Scholar
  48. 48.
    U. Yaron, P.L. Gammel, D.A. Huse, R.N. Kleiman, C.S. Oglesby, E. Bucher, B. Batlogg, D.J. Bishop, K. Mortensen, K. Clausen, C.A. Bolle, F. De La Cruz, Phys. Rev. Lett. 73, 2748 (1994)ADSCrossRefGoogle Scholar
  49. 49.
    D.S. Fisher, Phys. Rep. 301, 113 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jagdish Chandra
    • 1
  • Meghmalhar Manekar
    • 1
  • V. K. Sharma
    • 1
  • Puspen Mondal
    • 2
  • Pragya Tiwari
    • 2
  • S. B. Roy
    • 1
  1. 1.Magnetic and Superconducting Materials SectionRaja Ramanna Centre for Advanced TechnologyIndoreIndia
  2. 2.Indus Synchrotrons Utilisation DivisionRaja Ramanna Centre for Advanced TechnologyIndoreIndia

Personalised recommendations