Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 5–6, pp 1071–1079 | Cite as

Hard-Core Repulsion and Supersolid Cluster Crystals

  • Massimo Boninsegni
Article

Abstract

We study the effect of a short-ranged hard-core repulsion on the stability and superfluid properties of the cluster crystal phase of two-dimensional (2D) soft-core bosons. Results of Quantum Monte Carlo simulations on a cogent test case suggest that the main physical properties of the phase remain unaltered if the range d of the inner repulsive core is sufficiently short, even if the strength of the repulsion is several orders of magnitude greater than the outer soft-core barrier. Only if d is an appreciable fraction of the size of the clusters ( Open image in new window 5 %) does a sufficiently strong hard-core repulsion cause the crystal to break down into a homogeneous superfluid; a moderate inner core repulsion enhances the superfluid response of the crystalline phase.

Keywords

Supersolid phase of matter Rydberg atoms Quantum Monte Carlo simulations 

Notes

Acknowledgments

This work was supported by the Natural Science and Engineering Research Council of Canada. Computing support of Westgrid is gratefully acknowledged.

References

  1. 1.
    M. Boninsegni, N. Prokof’ev, Rev. Mod. Phys. 84, 759 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    M.H.W. Chan, R.B. Hallock, L. Reatto, J. Low Temp. Phys. 172, 317 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    E. Kim, M.H.W. Chan, Science 305, 1941 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Duk Y. Kim, M.H.W. Chan, Phys. Rev. Lett. 109, 155301 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    M. Boninsegni, A.B. Kuklov, L. Pollet, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Phys. Rev. Lett. 97, 080401 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    A.F. Andreev, I.M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969)ADSGoogle Scholar
  7. 7.
    G.V. Chester, Phys. Rev. A 2, 256 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    M. Boninsegni, J. Low Temp. Phys. 168, 137 (2012). and references thereinADSCrossRefGoogle Scholar
  9. 9.
    E.P. Gross, Phys. Rev. 106, 161 (1957)ADSCrossRefGoogle Scholar
  10. 10.
    S. Saccani, S. Moroni, M. Boninsegni, Phys. Rev. B 83, 092506 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    S. Saccani, S. Moroni, M. Boninsegni, Phys. Rev. Lett. 108, 175301 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    T.F. Gallagher, Rydberg Atoms (Cambridge University Press, Cambridge, 1994)CrossRefGoogle Scholar
  13. 13.
    N. Henkel, R. Nath, T. Pohl, Phys. Rev. Lett. 104, 195302 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    M. Rossi, S.L. Zavattari, D.E. Galli, L. Reatto, Phys. Rev. B 84, 052504 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 96, 070601 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. E 74, 036701 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    M. Boninsegni, S. Moroni, Phys. Rev. E 86, 056712 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M. Boninsegni, Phys. Rev. Lett. 111, 235303 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    S. Moroni, M. Boninsegni, J. Low Temp. Phys. 136, 129 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    E.L. Pollock, D.M. Ceperley, Phys. Rev. B 36, 8343 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    F. Mezzacapo, M. Boninsegni, Phys. Rev. Lett. 100, 145301 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations