Journal of Low Temperature Physics

, Volume 185, Issue 1–2, pp 161–173 | Cite as

Quasi-One-Dimensional Electronic States Inside and Outside Helium-Plated Carbon Nanotubes

  • M. Motta
  • D. E. Galli
  • M. Liebrecht
  • A. Del Maestro
  • M. W. Cole


About one-half a century ago, it was realized that electrons experience a repulsive barrier when approaching the surface of condensed phases of helium, hydrogen, and neon. This led to the proposal and subsequent observation of image-potential surface-bound electronic states, which exhibit intriguing quasi-two-dimensional behavior. In the present work, we report similar quasi-one-dimensional electronic states by exploring single-wall carbon nanotubes coated both inside and outside by thin helium films. Electrons near such structures are localized in the radial direction, but free to move along the nanotube axis. The many-body aspects of the system are discussed qualitatively.


Electrons on helium Carbon nanotubes Quantum wires 



It is a pleasure and a privilege to dedicate this contribution to Flavio Toigo, honoring a scientist who has given important contributions in many areas of condensed matter and statistical physics. One of the authors (M. C.) is particularly delighted to acknowledge a collaborative interaction over 35 years with professor Toigo, a creator of novel ideas and a fearless calculator. One of us (M. M.) acknowledges support from Dipartimento di Fisica, Università degli Studi di Milano, the Simons Foundation, and NSF (Grant no. DMR-1409510). We also acknowledge very helpful discussions with S. Rotkin and S. Hernandez.


  1. 1.
    B.E. Springett, J. Jortner, M.H. Cohen, J. Chem. Phys. 48, 2720 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    N.R. Kestner, J. Jortner, M.H. Cohen, S.A. Rice, Phys. Rev. 140, A56 (1965)ADSCrossRefGoogle Scholar
  3. 3.
    M.W. Cole, Rev. Mod. Phys. 46, 451 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    E. Andrei (ed.), Two-Dimensional Electron Systems (Kluwer Academic Publishers, Dordrecht, 1997)Google Scholar
  5. 5.
    M.A. Woolf, G.W. Rayfield, Phys. Rev. Lett. 15, 235 (1965)ADSCrossRefGoogle Scholar
  6. 6.
    H.J. Maris, J. Phys. Soc. Jpn. 77, 111008 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    G. Ramanan, G.R. Freeman, J. Chem. Phys. 93, 3120 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    G.W. Rayfield, W. Schoepe, Phys. Lett. A 34, 133 (1974)ADSCrossRefGoogle Scholar
  9. 9.
    F. Ancilotto, F. Toigo, Phys. Rev. B 50, 12820 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    M.J. Puska, R.M. Nieminen, M. Manninen, Phys. Rev. B 24, 3037 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    M.W. Cole, F. Toigo, Phys. Rev. B 31, 727 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    E. Fermi, Il Nuovo Cimento 11, 157 (1934)CrossRefGoogle Scholar
  13. 13.
    M. Liebrecht, A. Del Maestro, M.W. Cole, J. Low Temp. Phys. 183, 264 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    L.W. Bruch, M.W. Cole, Hye-Young Kim, J. Phys. Cond. Mat. 22, 304001 (2010)CrossRefGoogle Scholar
  15. 15.
    G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005)CrossRefGoogle Scholar
  16. 16.
    S. Tomonaga, Progr. Theor. Phys. 5, 544 (1950)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    D.C. Mattis, E.H. Lieb, J. Math. Phys. 6, 304 (1965)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    F.D.M. Haldane, J. Phys. C 14, 2585 (1981)ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    A. Imambekov, T.L. Schmidt, L.I. Glazman, Rev. Mod. Phys. 84, 1253 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    T. Giamarchi, Quantum physics in One Dimension (Oxford University Press, Oxford, 2003)CrossRefMATHGoogle Scholar
  22. 22.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover Publications, Mineola, 1964)MATHGoogle Scholar
  23. 23.
    V.V. Deshpande, M. Bockrath, Nat. Phys. 4, 314 (2008)CrossRefGoogle Scholar
  24. 24.
    M. Machon, S. Reich, C. Thomsen, Phys. Stat. Sol. (b) 243, 3166 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    D. Loss, T. Martin, Phys. Rev. B 50, 12160 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    A. Luther, V.J. Emery, Phys. Rev. Lett. 33, 589 (1974)ADSCrossRefGoogle Scholar
  27. 27.
    T. Giamarchi, Phys. Rev. B 44, 2905 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Motta
    • 1
  • D. E. Galli
    • 2
  • M. Liebrecht
    • 3
    • 4
  • A. Del Maestro
    • 5
  • M. W. Cole
    • 6
  1. 1.Department of physicsThe College of William and MaryWilliamsburgUSA
  2. 2.Dipartimento di FisicaUniversità degli Studi di MilanoMilanoItaly
  3. 3.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria
  4. 4.MathConsult GmbHLinzAustria
  5. 5.Department of physicsUniversity of VermontBurlingtonUSA
  6. 6.Department of physicsPenn State UniversityUniversity ParkUSA

Personalised recommendations