Journal of Low Temperature Physics

, Volume 183, Issue 3–4, pp 230–237 | Cite as

Quantum Turbulence in Coflow of Superfluid \(^{4}\)He

  • S. Ikawa
  • M. Tsubota


We study numerically nonuniform quantum turbulence of coflow in a square channel by the vortex filament model. Coflow means that superfluid velocity \(\varvec{v}_\mathrm{s}\) and normal fluid velocity \(\varvec{v}_\mathrm{n}\) flow in the same direction. Quantum turbulence for thermal counterflow has been long studied theoretically and experimentally. In recent years, experiments of coflow have been performed to observe different features from thermal counterflow. By supposing that \(\varvec{v}_\mathrm{s}\) is uniform and \(\varvec{v}_\mathrm{n}\) takes the Hagen–Poiseuille profile, simulations find that quantized vortices are distributed inhomogeneously. Vortices like to accumulate on the surface of a cylinder with \(\varvec{v}_\mathrm{s} \simeq \varvec{v}_\mathrm{n}\). Consequently, the vortex configuration becomes degenerate from three-dimensional to two-dimensional.


Superfluid \(^{4}\)He Quantized vortex Quantum turbulence Coflow 



M. T. was supported by JSPS KAKENHI Grant No. 26400366 and MEXT KAKENHI ”Fluctuation & Structure” Grant No. 26103526.


  1. 1.
    E. Varga, S. Babuin, L. Skrbek, Phys. Fluids 27, 065101 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1995), pp. 42–45Google Scholar
  3. 3.
    R.P. Feynman, Progress in Low Temperature Physics, vol. 1 (Elsevier, Amsterdam, 1955)Google Scholar
  4. 4.
    K.W. Schwarz, Phys. Rev. B 38, 2398 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B 81, 104511 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    K.W. Schwarz, Phys. Rev. B 31, 5782 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    R.W. Johnson, The Handbook of Fluid Dynamics (CRC, Boca Raton, 1998)MATHGoogle Scholar
  8. 8.
    S. Yui, M. Tsubota, Phys. Rev. B 91, 184504 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsOsaka City UniversityOsakaJapan
  2. 2.The OCU Advanced Research Institute for Natural Science and Technology (OCARINA)OsakaJapan

Personalised recommendations