Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 460–465 | Cite as

Development of a Microwave SQUID-Multiplexed TES Array for MUSTANG-2

  • S. M. Stanchfield
  • P. A. R. Ade
  • J. Aguirre
  • J. A. Brevik
  • H. M. Cho
  • R. Datta
  • M. J. Devlin
  • S. R. Dicker
  • B. Dober
  • D. Egan
  • P. Ford
  • G. Hilton
  • J. Hubmayr
  • K. D. Irwin
  • P. Marganian
  • B. S. Mason
  • J. A. B. Mates
  • J. McMahon
  • M. Mello
  • T. Mroczkowski
  • C. Romero
  • C. Tucker
  • L. Vale
  • S. White
  • M. Whitehead
  • A. H. Young
Article

Abstract

MUSTANG-2 is a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array in the final stages of development for operation on the 100-m Robert C. Byrd Green Bank Telescope. We present the camera design and report the performance during the first season of observation, in which 64 of the available 215 pixels in the focal plane were populated. We highlight the microwave multiplexing readout technology, which is envisioned as a path to read out the next generation of large pixel-count cryogenic focal planes. In this regard, MUSTANG2 is a pathfinder for this multiplexing technology. We present noise spectra which show no detector noise degradation when read out with microwave SQUID multiplexing, and we present first light images of Jupiter and M87, which demonstrate the end-to-end system performance.

Keywords

Microwave-multiplexed SQUIDs TES bolometers Focal plane arrays 90 GHz 

Notes

Acknowledgments

S.M. Stanchfield is supported by a NASA Space and Technology Research Fellowship. S.R. Dicker is funded through NSF Grant Number 1309032.

References

  1. 1.
    D.S. Swetz et al., ArXiv e-prints (2010)Google Scholar
  2. 2.
    J.E. Carlstrom et al., PASP 123, 568–581 (2011). doi: 10.1086/659879 ADSCrossRefGoogle Scholar
  3. 3.
    I.G. McCarthy, A. Babul, G.P. Holder, M.L. Balogh, Astrophys. J. 591, 515 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    J.A.B. Mates, Thesis, University of Colorado (2011)Google Scholar
  5. 5.
    P.A.R. Ade, G. Pisano, C. Tucker, S. Weaver, SPIE Conf. Ser. 6275, 62750U (2006). doi: 10.1117/12.673162 ADSGoogle Scholar
  6. 6.
    K.W. Yoon et al., AIP Conf. Proc. 1185, 515 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    M.J. Devlin, S.R. Dicker, J. Klein, M.P. Supanich, Cryogenics 44, 611 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    J.A.B. Mates, K.D. Irwin, L.R. Vale, G.C. Hilton, J. Gao, K.W. Lehnert, J. Low Temp. Phys. 167(5–6), 707–712 (2012)ADSCrossRefGoogle Scholar
  9. 9.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. M. Stanchfield
    • 1
  • P. A. R. Ade
    • 2
  • J. Aguirre
    • 1
  • J. A. Brevik
    • 3
  • H. M. Cho
    • 4
  • R. Datta
    • 5
  • M. J. Devlin
    • 1
  • S. R. Dicker
    • 1
  • B. Dober
    • 1
  • D. Egan
    • 6
  • P. Ford
    • 6
  • G. Hilton
    • 3
  • J. Hubmayr
    • 3
  • K. D. Irwin
    • 4
  • P. Marganian
    • 6
  • B. S. Mason
    • 7
  • J. A. B. Mates
    • 3
  • J. McMahon
    • 5
  • M. Mello
    • 6
  • T. Mroczkowski
    • 8
  • C. Romero
    • 9
  • C. Tucker
    • 2
  • L. Vale
    • 3
  • S. White
    • 6
  • M. Whitehead
    • 6
  • A. H. Young
    • 1
  1. 1.University of PennsylvaniaPhiladelphiaUSA
  2. 2.Cardiff UniversityCardiffUK
  3. 3.National Institute of Standards and Technology Boulder LaboratoriesBoulderUSA
  4. 4.Stanford UniversityStanfordUSA
  5. 5.University of MichiganAnn ArborUSA
  6. 6.National Radio Astronomy ObservatoryGreen BankUSA
  7. 7.National Radio Astronomy ObservatoryCharlottesvilleUSA
  8. 8.US Naval Research LabWashingtonUSA
  9. 9.University of VirginiaCharlottesvilleUSA

Personalised recommendations