Journal of Low Temperature Physics

, Volume 185, Issue 1–2, pp 129–137 | Cite as

Commensurate Phases of Kr Adsorbed on Single-Walled Carbon Nanotubes

  • Mamadou T. Mbaye
  • Sidi M. Maiga
  • Silvina M. Gatica


In this paper, we show that Krypton atoms form a commensurate solid (CS) phase with a fractional coverage of one krypton atom per every four carbons on zigzag carbon nanotubes. This is a unique phase, different from the \(\sqrt{3} \times \sqrt{3}\)R30\(^\circ \) CS monolayer formed on graphite, which has a lower coverage of one krypton atom per every six carbons. Our prediction disagrees with experiments that observe in nanotubes the same solid structure found on graphite. In order to address this discrepancy, we simulated adsorption of Kr on zigzag and armchair single-walled carbon nanotubes with radii ranging from 4.7 to 28.83 Å. Our simulations confirm that the CS of coverage 1/4 forms on medium-sized zigzag nanotubes. We also found the 1/6-coverage solid on graphene, which represents the infinite-radius limit of a nanotube. Our findings are key to experiments of adsorption on nanotubes where the interpretation and justification of the results are based on the monolayer coverage, such as mass or conductance isotherms measurements.


Adsorption Nanotubes Krypton Commensuration 



We are grateful for the support of the Partnership for Reduced Dimension Materials (PRDM), NSF Grant No. DMR1205608 and the Center for Integrated Quantum Materials (CIQM), NSF Grant No. DMR-1231319. We thank Milton Cole and Hye-Young Kim for fruitful comments and discussions. We thank the referees of this paper for their constructive comments.


  1. 1.
    F. Toigo, M.W. Cole, Phys. Rev. B 32, 6989 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    M. Boninsegni, M.W. Cole, F. Toigo, Phys. Rev. Lett. 83, 2002 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    F. Ancilotto, F. Toigo, Phys. Rev. B 47, 13713 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    M. Calbi, F. Toigo, M.W. Cole, J. Low Temp. Phys. 126, 129 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    A. Dillon, K. Jones, T. Bekkedahl, C. Kiang, D. Bethune, M. Heben, Nature 386, 377 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    A. Chambers, C. Park, R. Baker, N. Rodriguez, J. Phys. Chem. B 102, 4253 (1998)CrossRefGoogle Scholar
  7. 7.
    S. Inoue, N. Ichikuni, T. Suzuki, T. Uematsu, K. Kaneko, J. Phys. Chem. B 102, 4689 (1998)CrossRefGoogle Scholar
  8. 8.
    W. Teizer, R. Hallock, E. Dujardin, T. Ebbesen, Phys. Rev. Lett. 82, 5305 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    S. Weber, S. Talapatra, C. Journet, A.D. Migone, Phys. Rev. B 150, 61 (2000)Google Scholar
  10. 10.
    M. Calbi, M. Cole, S. Gatica, M. Bojan, J.K. Johnson, in Adsorption by Carbons, ed. by E. Bottani, J. Tascon (Elsevier Science, Amsterdam, 2008). Chap. 9Google Scholar
  11. 11.
    A.D. Migone, in Adsorption by Carbons, ed. by E. Bottani, J. Tascon (Elsevier Science, Amsterdam, 2008). Chap. 16Google Scholar
  12. 12.
    S. Gatica, M. Calbi, R. Diehl, M. Cole, J. Low Temp. Phys. 152, 89 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    M. Calbi, M. Cole, S. Gatica, M. Bojan, G. Stan, Rev. Mod. Phys. 73, 857 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    S. Rols, M. Johnson, P. Zeppenfeld, M. Bienfait, O. Vilches, J. Schneble, Phys. Rev. B 71, 155411 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    G. Stan, M. Bojan, S. Curtarolo, S. Gatica, M. Cole, Phys. Rev. B 62, 2173 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    S. Gatica, M. Bojan, G. Stan, M. Cole, J. Chem. Phys. 114, 3765 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Wang, J. Wei, P. Morse, J. Dash, O. Vilches, D. Cobden, Science 327, 552 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    H.-C. Lee, O. Vilches, Z. Wang, E. Fredrickson, P. Morse, R. Roy, B. Dzyubenko, D. Cobden, J. Low Temp. Phys. 94, 262 (2012)Google Scholar
  19. 19.
    A. Tavernarakis, J. Chaste, A. Eichler, G. Ceballos, M.C. Gordillo, J. Boronat, A. Bachtold, Phys. Rev. Lett. 112, 196103 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)CrossRefMATHGoogle Scholar
  21. 21.
    H. Kim, M.W. Cole, M.T. Mbaye, S.M. Gatica, J. Phys. Chem. A 115, 7249 (2011)Google Scholar
  22. 22.
    H. Kim, E. Booth, M. Mbaye, S. Gatica, J. Low Temp. Phys. 175, 590 (2014)Google Scholar
  23. 23.
    R. Masel, Principles of Adsorption and Reaction on Solid Surfaces, 1st edn. (Wiley, New York, 1996)Google Scholar
  24. 24.
    R.S. Berry, S.A. Rice, J. Ross, Physicalchemistry (Wiley, New York, 1980)Google Scholar
  25. 25.
    G. Stan, M.J. Bojan, S. Curtarolo, S.M. Gatica, M.W. Cole, Phys. Rev. B 62, 2173 (2000)Google Scholar
  26. 26.
    W. Carlos, M. Cole, Surface Sci. 91, 339 (1980)ADSCrossRefGoogle Scholar
  27. 27.
    L. Bruch, M. Cole, E. Zaremba, Physical Adsorption: Forces and Phenomena (Dover Publications, Mineola, 2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mamadou T. Mbaye
    • 1
  • Sidi M. Maiga
    • 1
  • Silvina M. Gatica
    • 1
  1. 1.Department of Physics and AstronomyHoward UniversityWashingtonUSA

Personalised recommendations