Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 82–87 | Cite as

Gamma-Ray Transition-Edge Sensor Microcalorimeters on Solid Substrates

  • Naoko Iyomoto
  • Hisao Kawakami
  • Keisuke Maehata
  • Ikumi Yoshimine
  • Yuki Shuto
  • Kenichiro Nagayoshi
  • Kazuhisa Mitsuda
  • Shohei Ezaki
  • Akira Takano
  • Shota Yoshimoto
  • Kenji Ishibashi
Article

Abstract

We develop transition-edge-sensor microcalorimeters for gamma-ray spectroscopy. To develop mechanically robust detectors, we fabricated devices with no membrane structure. We report results of three such devices, two with a Bi-absorber and the other with a Sn-absorber. The thickness and volume of each absorber are 1 mm and 0.5–0.6 mm\(^{3}\). We cooled the detectors and irradiated each with gamma rays from a Cs-137 source and observed two types of pulses: slow-rise and fast-rise. The slow-rise pulses are signals from gamma rays absorbed or Compton scattered in the absorbers and the fast-rise pulses are signals resulting from Compton scattering in the Si substrate. We selected the slow pulses to obtain energy spectra. The energy resolutions of the 662-keV photo peak for the Bi-absorber and Sn-absorber devices are, respectively, 4.1 and 7.5 keV, whereas their baseline energy resolutions are 3.2 and 2.6 keV. The degradation in energy resolution is mainly because of the fluctuation of bath temperature. The baseline energy resolutions are more than an order of magnitude worse than the design values. The poor resolution probably arises because of thermal noise from Compton events on the Si substrate.

Keywords

Gamma-ray Transition-edge-sensor Microcalorimeter Spectroscopy 

Notes

Acknowledgments

This research was supported by JSPS KAKENHI Grant No. 23360422 and by Kyushu University Interdisciplinary Programs in Education and Projects in Research Development.

References

  1. 1.
    K.D. Irwin, G.C. Hilton, Cryogen particle detection, in Topics in Applied Physics, vol. 99, ed. by C. Enss (Springer, Berlin, 2005)Google Scholar
  2. 2.
    S.J. Smith, J.S. Adams, C.N. Bailey, S.R. Bandler, J.A. Chervenak, M.E. Eckart, F.M. Finkbeiner, R.L. Kelley, C.A. Kilbourne, F.S. Porter, J.E. Sadleir, J. Low Temp. Phys. 167, 168 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    S.R. Bandler, R.P. Brekosky, A.-D. Brown, J.A. Chervenak, E. Figueroa-Feliciano, F.M. Finkbeiner, N. Iyomoto, R.L. Kelley, C.A. Kilbourne, F.S. Porter, J. Sadleir, S.J. Smith, J. Low Temp. Phys. 151, 400 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    W.B. Doriese, J.N. Ullom, J.A. Beall, W.D. Duncan, L. Ferreira, G.C. Hilton, R.D. Horansky, K.D. Irwin, J.A.B. Mates, C.D. Reintsema, L.R. Vale, Y. Xu, B.L. Zink, Appl. Phys. Lett. 90, 193508 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    R.D. Horansky, D.A. Bennett, D.R. Schmidt, B.L. Zink, J.N. Ullom, Appl. Phys. Lett. 103, 212602 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Naoko Iyomoto
    • 1
  • Hisao Kawakami
    • 1
  • Keisuke Maehata
    • 1
  • Ikumi Yoshimine
    • 1
  • Yuki Shuto
    • 1
  • Kenichiro Nagayoshi
    • 2
  • Kazuhisa Mitsuda
    • 2
  • Shohei Ezaki
    • 1
  • Akira Takano
    • 1
  • Shota Yoshimoto
    • 1
  • Kenji Ishibashi
    • 1
  1. 1.Kyushu UniversityNishi-kuJapan
  2. 2.ISAS/JAXASagamiharaJapan

Personalised recommendations