Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 718–723 | Cite as

Advantages of Photon Counting Detectors for Terahertz Astronomy

  • Hiroshi Matsuo
  • Hajime Ezawa
Article

Abstract

For astronomical observation at terahertz frequencies, a variety of cryogenic detector technologies are being developed to achieve background-limited observation from space, where a noise equivalent power (NEP) of less than \(10^{-18}\) W/Hz\(^{0.5}\) is often required. When each photon signal is resolved in time, the requirements on NEP are reduced and 1 ns time resolution corresponds to an NEP of approximately \(10^{-17}\) W/Hz\(^{0.5}\) at THz frequencies. Furthermore, fast photon counting detectors have a high dynamic range to observe bright terahertz sources such as stars and active galactic nuclei. Applications of photon counting detector are discussed for cosmic microwave background and photon counting terahertz interferometry.

Keywords

Terahertz astronomy Background-limited observation  Photon counting detector Cosmic microwave background Photon counting interferometry 

Notes

Acknowledgments

This research is financially supported by Matsuo Foundation, ISAS/JAXA, and Grant-in-Aid for Exploratory Research of JSPS KAKENHI Grant Number 15K13469.

References

  1. 1.
    B. Swinyard, T. Nakagawa, Exp. Astron. 23, 193 (2009). doi: 10.1007/s10686-008-9090-0 ADSCrossRefGoogle Scholar
  2. 2.
    W. Wild, N.S. Kardashev, Exp. Astron. 23, 221 (2009). doi: 10.1007/s10686-008-9097-6 ADSCrossRefGoogle Scholar
  3. 3.
    P.F. Goldsmith et al., Proc. SPIE 7010, 701020 (2008). doi: 10.1117/12.788412 CrossRefGoogle Scholar
  4. 4.
    D. Leisawitz et al., Adv. Space Res. 40, 689 (2007). doi: 10.1016/j.asr.2007.05.081 ADSCrossRefGoogle Scholar
  5. 5.
    F. Helmich, R.J. Ivison, Exp. Astron. 23, 245 (2009). doi: 10.1007/s10686-008-9100-2 ADSCrossRefGoogle Scholar
  6. 6.
    M.G. Hauser et al., Astrophys. J. 508, 25 (1998). doi: 10.1086/306379 ADSCrossRefGoogle Scholar
  7. 7.
    S. Ariyoshi et al., IEEE Trans. Appl. Supercond. 15–2, 920 (2005). doi: 10.1109/TASC.2005.850119 CrossRefGoogle Scholar
  8. 8.
    H. Ezawa, H. Matsuo, M. Ukibe, G. Fujii, S. Shiki, J. Low Temp. Phys. This Special Issue (2016)Google Scholar
  9. 9.
    S. Komiyama, IEEE J. Select. Top. Quantum Electron. 17, 54 (2011). doi: 10.1109/JSTQE.2010.2048893
  10. 10.
    B.S. Karasik, A.V. Sergeev, D.E. Prober, IEEE Trans. Terahertz Sci. Technol. 1, 97 (2011). doi: 10.1109/TTHZ.2011.2159560
  11. 11.
    H. Matsuo, J. Low Temp. Phys. 167, 840 (2012). doi: 10.1007/s10909-012-0579-6 ADSCrossRefGoogle Scholar
  12. 12.
    P. De Bernardis, S. Masi, Phys. Lett. B 118, 333 (1982). doi: 10.1016/0370-2693(82)90197-6 ADSCrossRefGoogle Scholar
  13. 13.
    M. Giovannini, Phys. Rev. D 83, 023515 (2011). doi: 10.1103/PhysRevD.83.023515 ADSCrossRefGoogle Scholar
  14. 14.
    R. Hanbury Brown, R.Q. Twiss, Nature 177, 27 (1956). doi: 10.1038/177027a0 ADSCrossRefGoogle Scholar
  15. 15.
    H. Ezawa et al., Proc. ISSTT-2015, W2–2 (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.National Astronomical Observatory of Japan (NAOJ)TokyoJapan

Personalised recommendations