Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 418–423 | Cite as

4 Kelvin Cryogenic Characterization of Commercial pHEMT Transistors at 9 kHz to 8.5 GHz Range

  • E. Ibarra-Medel
  • M. Velázquez
  • S. Ventura
  • D. Ferrusca
  • V. Gómez-Rivera


Nowadays, the technology innovations in large format array detectors at low temperature for millimetric observational astronomy demand the development of electronics capable to keep their functionality at cryogenic temperatures. In kinetic inductance detectors, the first stage of electronics readout requires high-bandwidth low-noise amplifiers (LNAs). These devices are commonly fabricated in monolithic microwave integrated circuit (MMIC) processes which commercially achieve a noise temperature level of 5 K. An alternative approach to the MMIC are the hybrid microwave circuit which mixes RF lumped elements and discrete electronic components. This paper describes the characterization of six commercial pHEMT transistors tested at cryogenic temperatures. DC properties such as I–V curves and transconductance (\(g_\mathrm{m}\)) were measured for each transistor; these measurements allow us to calculate the best bias point versus gain, with the lowest noise figure and power consumption within the range of 9 kHz to 8.5 GHz at the operating temperature of 4 K. Experimental results suggest that the characterized pHEMTs have a noise figure that allow them to be used in hybrid LNAs arranges with a comparable MMIC performance.


Cryogenics Radio frequency measurement pHEMT transistors  DC characterization Low-noise amplifier Noise simulation 


  1. 1.
    N. Smith, C. Richardson, Experimental Techniques in Condensed Matter Physics at Low Temperatures (Westview Press, Boulder, 1998)Google Scholar
  2. 2.
    D. Wolpert, P. Ampadu, Managing Temperature Effects in Nanoscale Adaptive Systems (Springer, New York, 2012)CrossRefGoogle Scholar
  3. 3.
    S. Voinigescu, High-Frequency Integrated Circuits (Cambridge University Press, Cambridge, 2013)CrossRefGoogle Scholar
  4. 4.
    G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design (Prentice Hall, Upper Saddle River, 1996)Google Scholar
  5. 5.
    J. Schleeh, G. Alestig, J. Halonen, A. Malmros, B. Nilsson, P. Nilsson, J.P. Starski, N. Wadefalk, H. Zirath, J. Grahn, IEEE Electron Device Lett. 33, 5 (2012). doi: 10.1109/LED.2012.2187422 CrossRefGoogle Scholar
  6. 6.
    J. Schleeh, H. Rodilla, N. Wadefalk, P. Nilsson, J. Grahn, IEEE Electron Device Lett. 60, 1 (2013). doi: 10.1109/TED.2012.2227485 CrossRefGoogle Scholar
  7. 7.
    I. Angelov, N. Wadefalk, J. Stenarson, E.L. Kollberg, P. Starski, H. Zirath, IEEE Trans. Microw. Theory Tech. 50, 6 (2002). doi: 10.1109/TMTT.2002.1006408
  8. 8.
    A. Caddemi, G. Crupi, N. Donato, IEEE Trans. Instrum. Meas. 55(2), 465 (2006). doi: 10.1109/TIM.2006.864248 CrossRefGoogle Scholar
  9. 9.
    S. Weinreb, J. Bardin, H. Mani, G. Jones, Rev. Sci. Instrum. 80, 044702 (2009). doi: 10.1063/1.3103939 ADSCrossRefGoogle Scholar
  10. 10.
    M. Velázquez, D. Ferrusca, E. Castillo-Domínguez, E. Ibarra-Medel, S. Ventura, V. Gómez-Rivera, D. Hughes, I. Aretxaga, G. Wilson, S. Doyle, P. Mauskopf, Low-Temp. Detect. (2015, in revision)Google Scholar
  11. 11.
    S. Doyle, Lumped Element Kinetic Inductance Detectors, PhD Dissertation, Cardiff University (2008)Google Scholar
  12. 12.
    B.A. Mazin, Rev. Sci. Instrum. 1185, 135 (2009). doi: 10.1063/1.3292300 Google Scholar
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.
  18. 18.
  19. 19.
    T.R. Turlington, Behavioral Modeling of Nonlinear RF and Microwave Devices (Artech House Publishers, Norwood, 1999)Google Scholar
  20. 20.
    D.M. Pozar, Microwave Engineering (Willey, New York, 2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • E. Ibarra-Medel
    • 1
  • M. Velázquez
    • 1
  • S. Ventura
    • 1
  • D. Ferrusca
    • 1
  • V. Gómez-Rivera
    • 1
  1. 1.Department of AstrophysicsNational Institute of Astrophysics, Optics and ElectronicsTonantzintlaMexico

Personalised recommendations