Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 180–187 | Cite as

Low Noise Titanium Nitride KIDs for SuperSpec: A Millimeter-Wave On-Chip Spectrometer

  • S. Hailey-Dunsheath
  • E. Shirokoff
  • P. S. Barry
  • C. M. Bradford
  • S. Chapman
  • G. Che
  • J. Glenn
  • M. Hollister
  • A. Kovács
  • H. G. LeDuc
  • P. Mauskopf
  • C. McKenney
  • R. O’Brient
  • S. Padin
  • T. Reck
  • C. Shiu
  • C. E. Tucker
  • J. Wheeler
  • R. Williamson
  • J. Zmuidzinas
Article

Abstract

SuperSpec is a novel on-chip spectrometer we are developing for multi-object, moderate resolution (\(R =\) 100–500), large bandwidth (\({\sim }1.65:1\)), submillimeter and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer employs a filter bank architecture, and consists of a series of half-wave resonators formed by lithographically-patterned superconducting transmission lines. The signal power admitted by each resonator is detected by a lumped element titanium nitride (TiN) kinetic inductance detector operating at 100–200 MHz. We have tested a new prototype device that achieves the targeted \(R=100\) resolving power, and has better detector sensitivity and optical efficiency than previous devices. We employ a new method for measuring photon noise using both coherent and thermal sources of radiation to cleanly separate the contributions of shot and wave noise. We report an upper limit to the detector NEP of \(1.4\times 10^{-17}\) W Hz\(^{-1/2}\), within 10 % of the photon noise-limited NEP for a ground-based \(R=100\) spectrometer.

Keywords

Kinetic inductance detector Millimeter-wave Spectroscopy 

Notes

Acknowledgments

This project is supported by NASA Astrophysics Research and Analysis (APRA) Grant No. 399131.02.06.03.43 and by the NSF Advanced Technology and Instrumentation program award #1407287.

References

  1. 1.
    D.J. Fixsen, E. Dwek, J.C. Mather, C.L. Bennett, R.A. Shafer, ApJ 508, 123 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Crites, A.T., et al. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9153, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 1 (2014)Google Scholar
  3. 3.
    R. Wang et al., ApJ 773, 44 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Hailey-Dunsheath, S., et al. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 9153, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 0 (2014)Google Scholar
  5. 5.
    Kovács, A., et al. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8452, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2012)Google Scholar
  6. 6.
    Barry, P.S., et al.: In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8452, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2012)Google Scholar
  7. 7.
    Shirokoff, E., et al. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8452, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2012)Google Scholar
  8. 8.
    S. Hailey-Dunsheath et al., Optical measurements of superspec: A millimeter-Wave On-Chip Spectrometer. J. Low Temp. Phys. 176, 841–847 (2014). doi: 10.1007/s10909-013-1068-2 ADSCrossRefGoogle Scholar
  9. 9.
    E. Shirokoff et al., Design and performance of superspec: An on-chip, KID-Based, mm-Wavelength Spectrometer. J. Low Temp. Phys. 176, 657–662 (2014). doi: 10.1007/s10909-014-1122-8 ADSCrossRefGoogle Scholar
  10. 10.
    H.G. Leduc et al., Appl. Phys. Lett. 97, 102509 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    D. Rosen et al., Appl. Opt. 52, 8102 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    S.J.C. Yates, J.J.A. Baselmans, A. Endo, R.M.J. Janssen, L. Ferrari, P. Diener, A.M. Baryshev, Appl. Phys. Lett. 99, 073505 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    de Visser, P.J., Baselmans, J.J.A., Bueno, J., Llombart, N., & Klapwijk, T.M.: Nat. Commun. 5 (2014)Google Scholar
  14. 14.
    H. McCarrick et al., Rev. Sci. Instrum. 85, 123117 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    J. Hubmayr et al., Appl. Phys. Lett. 106, 073505 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    T. Guruswamy, D.J. Goldie, S. Withington, Supercond. Sci. Technol. 27, 055012 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. Hailey-Dunsheath
    • 1
  • E. Shirokoff
    • 2
  • P. S. Barry
    • 3
  • C. M. Bradford
    • 4
  • S. Chapman
    • 5
  • G. Che
    • 6
  • J. Glenn
    • 7
  • M. Hollister
    • 1
  • A. Kovács
    • 1
    • 8
  • H. G. LeDuc
    • 4
  • P. Mauskopf
    • 3
    • 6
  • C. McKenney
    • 1
  • R. O’Brient
    • 4
  • S. Padin
    • 1
  • T. Reck
    • 4
  • C. Shiu
    • 1
  • C. E. Tucker
    • 3
  • J. Wheeler
    • 7
  • R. Williamson
    • 4
  • J. Zmuidzinas
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.Department of Astronomy & AstrophysicsUniversity of ChicagoChicagoUSA
  3. 3.School of Physics & AstronomyCardiff UniversityCardiffUK
  4. 4.Jet Propulsion LaboratoryPasadenaUSA
  5. 5.Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxCanada
  6. 6.School of Earth and Space Exploration and Department of PhysicsArizona State UniversityTempeUSA
  7. 7.Center for Astrophysics and Space AstronomyUniversity of ColoradoBoulderUSA
  8. 8.Institute for AstrophysicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations