Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 668–673 | Cite as

Fabrication of Feedhorn-Coupled Transition Edge Sensor Arrays for Measurement of the Cosmic Microwave Background Polarization

  • K. L. Denis
  • A. Ali
  • J. Appel
  • C. L. Bennett
  • M. P. Chang
  • D. T. Chuss
  • F. A. Colazo
  • N. Costen
  • T. Essinger-Hileman
  • R. Hu
  • T. Marriage
  • K. Rostem
  • K. U-Yen
  • E. J. Wollack
Article

Abstract

Characterization of the minute cosmic microwave background polarization signature requires multi-frequency, high-throughput precision instrument systems. We have previously described the detector fabrication of a 40 GHz focal plane and now describe the fabrication of detector modules for measurement of the CMB at 90 GHz. The 90 GHz detectors are a scaled version of the 40 GHz architecture where, due to smaller size detectors, we have implemented a modular (wafer level) rather than the chip-level architecture. The new fabrication process utilizes the same design rules with the added challenge of increased wiring density to the 74 TES’s as well as a new wafer level hybridization procedure. The hexagonally shaped modules are tile-able, and as such can be used to form the large focal planes required for a space-based CMB polarimeter. The detectors described here will be deployed in two focal planes with seven modules each in the Johns Hopkins University led ground-based Cosmology Large Angular Scale Surveyor (CLASS) telescope.

Keywords

TES CMB Wafer bonding Micro-machining Polarization 

Notes

Acknowledgments

NASA ROSES/APRA grant provided support for the detector technology development. We acknowledge the National Science Foundation for their support of CLASS under Grants numbered 0959349 and 1429236.

References

  1. 1.
    T. Essinger-Hileman et al., in Proceedings of the SPIE 9153, millimeter, submillimeter, and far-infrared detectors for astronomy VII, 91531I (2014)Google Scholar
  2. 2.
    E. Wollack, J. Phys. 155, 42–50 (2009)Google Scholar
  3. 3.
    K. U-Yen et al., IEEE Trans. Microw. Theory Tech. 56, 172–177 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    K.L. Denis et al., AIP Conf. Proc. 1185(1), 371–374 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    J. Appel et. al., in Proceedings of the SPIE millimeter, submillimeter, and far-Infrared detectors and instrumentation for astronomy VII 9153, (SPIE, 2014), p. 915355Google Scholar
  6. 6.
    L. Fabrega et. al., in IEEE Transactions on applied superconductivity, Vol 19 (2009), pp. 3779–3785. doi: 10.1109/10.1109/TASC.2009.2027609
  7. 7.
    K. Rostem et al., J. Appl. Phys. 115, 124508 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    E. Wollack et. al., in Microwave Symposium Digest (MTT), (IEEE MTT-S International, 2010), p. 1Google Scholar
  9. 9.
    E. Crowe et. al., in IEEE Transactions on applied superconductivity, (2013), pp. 2500505– 2500505Google Scholar
  10. 10.
    T.M. Miller et al., J. Low Temp. Phys. 151(1–2), 483–488 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2015

Authors and Affiliations

  • K. L. Denis
    • 1
  • A. Ali
    • 2
  • J. Appel
    • 2
  • C. L. Bennett
    • 2
  • M. P. Chang
    • 1
    • 3
  • D. T. Chuss
    • 4
  • F. A. Colazo
    • 1
  • N. Costen
    • 1
    • 3
  • T. Essinger-Hileman
    • 2
  • R. Hu
    • 1
    • 3
  • T. Marriage
    • 2
  • K. Rostem
    • 2
  • K. U-Yen
    • 1
  • E. J. Wollack
    • 1
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Johns Hopkins UniversityBaltimoreUSA
  3. 3.Stinger Ghaffarian Technologies GreenbeltGreenbeltUSA
  4. 4.Villanova UniversityVillanovaUSA

Personalised recommendations