Journal of Low Temperature Physics

, Volume 181, Issue 5–6, pp 197–210 | Cite as

Double Barriers and Magnetic Field in Bilayer Graphene



We study the transmission probability in an AB-stacked bilayer graphene of Dirac fermions scattered by a double-barrier structure in the presence of a magnetic field. We take into account the full four bands structure of the energy spectrum and use the suitable boundary conditions to determine the transmission probability. Our numerical results show that for energies higher than the interlayer coupling, four ways for transmission are possible while for energies less than the height of the barrier, Dirac fermions exhibit transmission resonances and only one transmission channel is available. We show that, for AB-stacked bilayer graphene, there is no Klein tunneling at normal incidence. We find that the transmission displays sharp peaks inside the transmission gap around the Dirac point within the barrier regions while they are absent around the Dirac point in the well region. The effect of the magnetic field, interlayer electrostatic potential, and various barrier geometry parameters on the transmission probabilities is also discussed.


Bilayer graphene Double barriers Magnetic field Transmission 



The authors would like to acknowledge the support of KFUPM under the Group Project RG1306-1 and RG1306-2. The generous support provided by the Saudi Center for Theoretical Physics (SCTP) is highly appreciated by all authors.


  1. 1.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)CrossRefADSGoogle Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)CrossRefADSGoogle Scholar
  3. 3.
    Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)CrossRefADSGoogle Scholar
  4. 4.
    S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 100, 016602 (2008)CrossRefADSGoogle Scholar
  5. 5.
    Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, P. Avouris, Science 327, 662 (2010)CrossRefADSGoogle Scholar
  6. 6.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)Google Scholar
  7. 7.
    E. McCann, V.I. Fałko, Phys. Rev. Lett. 96, 086805 (2006)CrossRefADSGoogle Scholar
  8. 8.
    K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fałko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A. Geim, Nat. Phys. 2, 177 (2006)CrossRefGoogle Scholar
  9. 9.
    K.S. Novoselov, V.I. Fałko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 192 (2012)CrossRefADSGoogle Scholar
  10. 10.
    S.Y. Zhou, D.A. Siegel, A.V. Fedorov, F. El Gabaly, A.K. Schmid, A.H. Castro Neto, A. Lanzara, Nat. Mater. 7, 259 (2007)CrossRefADSGoogle Scholar
  11. 11.
    R. Costa Filho, G. Farias, F. Peeters, Phys. Rev. B 76, 193409 (2007)Google Scholar
  12. 12.
    Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820 (2009)CrossRefADSGoogle Scholar
  13. 13.
    E. McCann, Phys. Rev. B 74, 1 (2006)CrossRefGoogle Scholar
  14. 14.
    F. Guinea, A.H.C. Neto, N.M.R. Peres, Phys. Rev. B 73, 245426 (2006)CrossRefADSGoogle Scholar
  15. 15.
    S. Latil, L. Henrard, Phys. Rev. Lett. 97, 036803 (2006)CrossRefADSGoogle Scholar
  16. 16.
    B. Partoens, F.M. Peeters, Phys. Rev. B 74, 075404 (2006)CrossRefADSGoogle Scholar
  17. 17.
    M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)CrossRefGoogle Scholar
  18. 18.
    N. Agrawal, S. Grover, S. Ghosh, J. Phys. 24, 175003 (2012)Google Scholar
  19. 19.
    B.V. Duppen, F.M. Peeters, Phys. Rev. B 87, 205427 (2013)CrossRefADSGoogle Scholar
  20. 20.
    H.A. Alshehab, H. Bahlouli, A. El Mouhafid, A. Jellal,  arXiv:1401.5427 (2014)
  21. 21.
    A. Jellal, I. Redouani, H. Bahlouli, Phys. E 72, 149 (2015)CrossRefGoogle Scholar
  22. 22.
    P.R. Wallace, Phys. Rev. 71, 622 (1947)MATHCrossRefADSGoogle Scholar
  23. 23.
    J.C. Slonczewski, P.R. Weiss, Phys. Rev. 109, 272 (1958)CrossRefADSGoogle Scholar
  24. 24.
    J.W. McClure, Phys. Rev. 108, 612 (1957)CrossRefADSGoogle Scholar
  25. 25.
    I. Snyman, C.W.J. Beenakker, Phys. Rev. B 75, 045322 (2007)CrossRefADSGoogle Scholar
  26. 26.
    B. Van Duppen, F.M. Peeters, Europhys. Lett. 102, 27001 (2013)CrossRefADSGoogle Scholar
  27. 27.
    N. Gu, M. Rudner, L. Levitov, Phys. Rev. Lett. 107, 156603 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ilham Redouani
    • 1
  • Ahmed Jellal
    • 1
    • 2
  • Hocine Bahlouli
    • 3
  1. 1.Theoretical Physics Group, Faculty of SciencesChouaïb Doukkali UniversityEl JadidaMorocco
  2. 2.Saudi Center for Theoretical PhysicsDhahranSaudi Arabia
  3. 3.Physics DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations