Advertisement

Journal of Low Temperature Physics

, Volume 180, Issue 5–6, pp 416–424 | Cite as

Operation and Improvement of Liquid Nitrogen Pumps with Radial High- Temperature Superconductor Bearings

  • Q. X. Lin
  • D. H. Jiang
  • Z. G. Deng
  • G. T. Ma
  • J. Zheng
  • W. J. Wang
  • D. I. Shin
  • X. Gu
  • N. Lin
  • M. L. Shao
Article

Abstract

This paper reviews the advantages of replacing the mechanical bearings of low-temperature pumps by radial high- temperature superconductor (HTS) bearings. Radial HTS bearings have the advantage of being non-abrasive, so that the working life is increased significantly. In this article, two types of liquid nitrogen pump with radial HTS bearings are proposed. To reduce heat leakage, one pump uses a permanent magnet (PM) coupling and the other uses a long hollow pipe coupling. Successful stable operation of these two pumps means that radial HTS bearings have the potential to be applied in liquid nitrogen pumps. Test results show that the flow rate is influenced mainly by rotational speed but not by the coupling component. Further designs of the two types of pump for practical applications are described, and their characteristics are analyzed: the pump with a PM coupling has lower heat leakage, whereas the pump with a long hollow pipe coupling can solve the force creep problem of the HTS bearing. The design of the pump with a long hollow pipe coupling is based on the pump that is already in practical use, and therefore has greater feasibility for practical applications. Finally, improvements of the liquid nitrogen pump by improving the structure of the pump and the performance of the radial HTS bearing are discussed.

Keywords

Liquid nitrogen pump Radial high-temperature superconductor bearing Flow rate Force creep 

Notes

Acknowledgments

The authors would like to thank Professor Jiasu Wang, Professor Suyu Wang, Xin Chen, Xinglin Liao, Shijun Zheng, Hailian Jing, and Yuanyuan Xu for their help with this paper.

References

  1. 1.
    Q. Lin, D. Jiang, G. Ma, J.S. Wang, Z.G. Deng, J. Zheng, S.Y. Wang, IEEE Trans. Appl. Supercond. 22(3), 5201604 (2012)CrossRefGoogle Scholar
  2. 2.
    F. Werfel, U. Floegel-Delor, T. Riedel, R. Rothfeld, D. Wippich, B. Goebel, P. Kummeth, H.-W. Neumueller, W. Nick, IEEE. Trans. Appl. Supercond. 13(2), 2173–2178 (2003)CrossRefGoogle Scholar
  3. 3.
    H. Walter, S. Arsac, J. Bock, S.O. Siems, W.-R. Canders, A. Leenders, H.C. Freyhardt, H. Fieseler, M. Kesten, IEEE. Trans. Appl. Supercond. 13(2), 2150–2153 (2003)CrossRefGoogle Scholar
  4. 4.
    X. Zhang, H. Bai, Cryogenics 146, 24–28 (2005). (in Chinese)Google Scholar
  5. 5.
    S. Zhu, C. Yuan, M. Zhuang, Q. Zhang, D. Ma, G. Ma, Vac. Cryog. (Supplementary issue 1), 27–32 (in Chinses) (2011)Google Scholar
  6. 6.
    N. Koshizuka, Phys. C 445–448, 1103–1108 (2006)CrossRefGoogle Scholar
  7. 7.
    T. Ichihara, K. Matsunaga, M. Kita, I. Hirabayashi, M. Isono, M. Hirose, K. Yoshii, K. Kurihara, O. Saito, S. Saito, M. Murakami, H. Takabayashi, M. Natsumeda, N. Koshizuka, Phys. C 426–431, 752–758 (2005)CrossRefGoogle Scholar
  8. 8.
    Takumi Ichihara, Koji Matsunaga, Makoto Kita, Izumi Hirabayashi, Masayuki Isono, Makoto Hirose, Keiji Yoshii, Kazuaki Kurihara, Osamu Saito, Shinobu Saito, Masato Murakami, Hirohumi Takabayashi, Mitsutoshi Natsumeda, Naoki Koshizuka, IEEE. Trans. Appl. Supercond. 15(2), 2245–2248 (2005)CrossRefGoogle Scholar
  9. 9.
    X. Zhang, L. Sheng, H. Bai, Cryogenics 152, 42–46 (2006). (in Chinese)Google Scholar
  10. 10.
    D. Chen, Z. Chen, Aerosp. Mater. Technol. 4, 1–7 (2000). (in Chinese)CrossRefGoogle Scholar
  11. 11.
    W. Zhao, Q. Sun, X. Liu, Cryog. Technol. 2, 20–22 (2005). (in Chinese)Google Scholar
  12. 12.
    G. Ma, Q. Lin, D. Jiang, C. Yuan, Z. Deng, J. Low Temp. Phys. 72, 299–309 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Q. X. Lin
    • 1
    • 2
  • D. H. Jiang
    • 2
  • Z. G. Deng
    • 2
  • G. T. Ma
    • 2
  • J. Zheng
    • 2
  • W. J. Wang
    • 1
  • D. I. Shin
    • 1
  • X. Gu
    • 1
  • N. Lin
    • 1
  • M. L. Shao
    • 1
    • 3
  1. 1.Guangzhou Institute of Advanced TechnologyChinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.Applied Superconductivity LaboratorySouthwest Jiaotong UniversityChengduPeople’s Republic of China
  3. 3.Department of Mechanical EngineeringHanyang UniversityAnsanKorea

Personalised recommendations