Journal of Low Temperature Physics

, Volume 180, Issue 3–4, pp 266–276 | Cite as

Structural and Electrical Conductivity Analysis of the Perovskite La\(_{0.65}\)Pr\(_{0.1}\)Ba\(_{0.25}\)Mn\(_{1-x}\)Ga\(_{x}\)O\(_{3}\)

  • Chokri Hadj Belgacem
  • Aymen Ahmed El-Amine
  • Abdessalem Dhahri


The structural and electrical properties of La\(_{0.65}\)Pr\(_{0.1}\)Ba\(_{0.25}\)Mn\(_\mathrm{1-x}\)Ga\(_\mathrm{x}\)O\(_{3}\)(x= 0, 0.05 and 0.15) nano-crystalline manganite have been studied systematically. The doped compositions were successfully synthesized by the Pechini sol-gel technique at 1273K and then characterized by x-ray diffraction (XRD), Scanning electron microscopy (SEM), AC impedance and DC conductivity. Rietveld refinement of XRD patterns revealed that all technique orthorhombic structure with Pnma space group. AC impedance studies revealed their semi-conducting behavior in air. Complex impedance plots exhibit semicircular arcs described by an electrical equivalent circuit. Off–centered semicircular impedance plots show that the Ga-doped compounds obey a non-Debye relaxation process. The activation energies calculated from the electrical conductivity is lower than these calculated from relaxation time. This indicates that the same type of charge carriers is responsible for both electrical conduction and relaxation phenomena.


Perovskite X-ray diffraction Impedance spectroscopy  AC conductivity 



The authors would like to extend their appreciation to the Deanship of Scientific Research at King Abdul-Aziz City for Science and Technology for its funding this research project N\(^{\circ }\). (A-L-11-0469).


  1. 1.
    R. VonHelmot, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Let. 71, 2331 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    N. Khare, D.P. Singh, H.K. Gupta, P.K. Siwach, O.N. Srivastava, J. Phys. Chem. Solids 65, 867 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    S. Jin, T.H. Teifel, Mc Cormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    C. Zener, Phys. Rev. 82, 403 (1951)ADSCrossRefGoogle Scholar
  5. 5.
    H. Rahmouni\(^{,}\) A. Dhahri, K. Khirouni, J. Alloys Compd 591, 259 (2014)Google Scholar
  6. 6.
    A.Dhahri, F.I.H. Rhouma, J. Dhahri, E. Dhahri, M.A. Valente S State. Com. 151, 738 (2011)Google Scholar
  7. 7.
    H. Rahmouni, B. Cherif, M. Baazaoui, K. Khirouni, J. Alloys Compd 575, 5 (2013)CrossRefGoogle Scholar
  8. 8.
    V. Paunovic, L. Zivkovic, L. Vracar, V. Mitic, M. Miljkovic, Serbian J. Elect. Eng. 1, 89 (2004)CrossRefGoogle Scholar
  9. 9.
    I.A. Souza, L.S. Cavalcante, J.C. Sczancoski, F. Moura, C.O. Paiva-Santos, J.A. Varela, A.Z. Simões, E. Longo, J. Alloys Compd. 477, 877 (2009)CrossRefGoogle Scholar
  10. 10.
    F. Moura, A.Z. Simõoes, L.S. Cavalcante, M.A. Zaghete, J.A. Varela, E. Longo, J. Alloys Compd. 466, 15 (2008)CrossRefGoogle Scholar
  11. 11.
    I.M. Hodge, M.D. Ingram, A.R. West, Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J. Electroanal. Chem. 74, 125 (1976)CrossRefGoogle Scholar
  12. 12.
    C.Y. Hsu, Hsiung Chou, B.Y. Liao, J.C.A. Huang, Appl. Phys. Lett. 89, 262501 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    B.V.B. Saradhi, K. Srinivas, G. Prasad, S.V. Suryanarayana, T. Bhima Sankaram, Mater. Sci. Eng. B. 98, 10 (2003)CrossRefGoogle Scholar
  14. 14.
    V.M. Goldschmit, Geochemische Verteilungsgesetz der Element 7, 8 (1927)Google Scholar
  15. 15.
    R.D. Shannon, Acta Cryst. A 32, 751 (1976)CrossRefGoogle Scholar
  16. 16.
    A. Guinier, in: X. Dunod (Ed.), 482 (1964)Google Scholar
  17. 17.
    C. Vázquez-Vázquez, M.C. Blanco, M.A. López-Quintela, R.D. Sánchez, J. Rivas, S.B. Oseroff, J. Mater Chem. 8, 991 (1998)CrossRefGoogle Scholar
  18. 18.
    A. Maeda, H. Kitano, R. Inoue, J. Phys. Condens. Matter. 17, 143 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    E. Barsoukov, J. Ross Macdonald, Impedance Spectroscopy Theory, Experiment and Applications, second ed., Wiley Interscience, New York, 2005, p. 14Google Scholar
  20. 20.
    U. Intatha, S. Eitssayeam, J. Wang, T. Tunkasiri, Curr. Appl. Phys. 10, 21 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    S. Sen, R.N.P. Choudhary, P. Pramanik, Phys. B 387, 56 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    J.L. Cohn, M. Peterca, J.J. Neumeier, J. Appl. Phys. 97, 034102 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    H. Rahmouni, A. Selmi, K. Khirouni, N. Kallel, J. Alloys Compd. 533, 93 (2012)CrossRefGoogle Scholar
  24. 24.
    B.C. Sutar, R.N.P. Choudhary, Piyush R. Das, Ceram. Int. 40, 7791 (2014)CrossRefGoogle Scholar
  25. 25.
    B.P. Das, R.N.P. Choudhary, P.K. Matapattra, J. Eng. Mater. Sci. 15, 152 (2008)Google Scholar
  26. 26.
    R. Chourasia, O.P. Shrivastava, Solid State Sci. 14, 341 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996)Google Scholar
  28. 28.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)Google Scholar
  29. 29.
    N.F. Mott, E.A. Davis, Electronic Process in Non-crystalline Materials (Clarendon Press, Oxford, 1979)Google Scholar
  30. 30.
    M. Shah, M. Nadeem, M. Idrees, M. Atif, M.J. Akhtar, J. Magn. Magn. Mater 332, 61 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    S. Komine, E. Iguchi, J. Phys. Chem. Solids 68, 1504 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chokri Hadj Belgacem
    • 1
  • Aymen Ahmed El-Amine
    • 1
    • 2
  • Abdessalem Dhahri
    • 3
    • 4
  1. 1.Physics Department, Science College at YanbuTaibah UniversityMadinahKSA
  2. 2.Physics Department, Faculty of ScienceAswan UniversityAswanEgypt
  3. 3.Laboratory of Physical Chemistry of Materials, Faculty of SciencesMonastir UniversityMonastirTunisia
  4. 4.Center for Scientific Research, Departement of PhysicsAl-Qunfudah University College, Umm Al-Qura UniversityMeccaKSA

Personalised recommendations