Skip to main content

Advertisement

Log in

Flux Dynamics, ac Losses, and Activation Energies in (Ba\(_{0.6}\)K\(_{0.4})\)Fe\(_{2}\)As\(_{2}\) Bulk Superconductor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Flux pinning and thermally assisted flux flow are studied in a (Ba\(_{0.6}\)K\(_{0.4})\)Fe\(_{2}\)As\(_{2}(T_\mathrm{c}\)=38.3 K) bulk samples in magnetic fields up to 18 T via ac susceptibility measurements. Ac susceptibility curves shift to higher temperatures as the frequency is increased from 75 to 1,997 Hz in all fields. The frequency (\(f)\) shift of the susceptibility curves is modeled by the Anderson-Kim Arrhenius law \(f = f_{0}\mathrm{exp}(-E_\mathrm{a}{ /kT})\) to determine flux activation energy \(E_\mathrm{a}/k\) as a function of ac field \(H_\mathrm{ac}\) and dc magnetic flux density \(\mu \) \(_\mathrm{0} H_\mathrm{dc}\). \(E_\mathrm{a}/k\) ranges from 8,822 K (761 meV) at \(\mu \) \(_{0} H_{dc}\) = 0 T to 1,100 K (95 meV) at 18 T for \(H_\mathrm{ac}=\)80 A/m (1 Oe). The energies drop very quickly in a non-linear manner as \(\mu \) \(_{0} H_\mathrm{dc}\) increases from 0 to 1 T, and more gradually, in a linear-like manner, as \(\mu \) \(_{0} H_\mathrm{dc}\) increases further to 18 T, suggesting some kind of vortex transition. For ac fields of 400 A/m (5 Oe) and higher, the Arrhenius model starts breaking down, at around \(\mu \) \(_{0} H_{ \mathrm dc}\) = 2 T. As the dc magnetic flux density increases further, this breakdown becomes significant for \(\mu _{0} H_\mathrm{dc}\) = 15 and 18 T at ac fields of 400 A/m and higher. Extensive mapping of the de-pinning, or irreversibility, lines shows broad dependence on the magnitude of the ac field, frequency, in addition to the dc magnetic flux density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Rotter, M. Tegel, D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008)

    Article  ADS  Google Scholar 

  2. Z.S. Wang, H.Q. Luo, C. Ren, H.H. Wen, Phys. Rev. B 78, 140501 (R) (2008)

    Article  ADS  Google Scholar 

  3. M.M. Altarawneh et al., Phys. Rev. B 78, 220505 (R) (2008)

    Article  ADS  Google Scholar 

  4. H. Yang, H.Q. Luo, Z.S. Wang, H.H. Wen, Appl. Phys. Lett. 93, 142506 (2008)

    Article  ADS  Google Scholar 

  5. R. Prozorov et al., Phys. Rev. B 82, 180513 (R) (2010)

    Article  ADS  Google Scholar 

  6. M. Konczykowski et al., Phys. Rev. B 86, 024515 (2012)

    Article  ADS  Google Scholar 

  7. M. Nikolo, R.B. Goldfarb, Phys. Rev. B 39, 6615 (1989)

    Article  ADS  Google Scholar 

  8. K.-H. Müller, M. Nikolo, R. Driver, Phys. Rev. B 43, 7976 (1991)

    Article  ADS  Google Scholar 

  9. M. Nikolo, W. Kiel, H.M. Duan, A.M. Hermann, Phys. Rev. B 45, 5641 (1992)

    Article  ADS  Google Scholar 

  10. P.W. Anderson, Phys. Rev. Lett. 9, 309 (1962)

    Article  ADS  Google Scholar 

  11. P.W. Anderson, Y.B. Kim, Rev. Mod. Phys. 36, 39 (1964)

    Article  ADS  Google Scholar 

  12. J.D. Weiss, J. Jiang, A.A. Polyanskii, E.E. Hellstrom, Supercond. Sci. Tech. 26, 074003 (2013)

    Article  ADS  Google Scholar 

  13. R.B. Goldfarb et al., in Magnetic Susceptibility of Superconductors and Other Spin Systems, ed. by R.A. Hein et al. (Plenum Press, New York, 1991), p. 59

  14. M. Nikolo, Am. J. Phys. 63, 57 (1995)

    Article  ADS  Google Scholar 

  15. A.P. Malozemoff, T.K. Worthington, Y. Yeshurun, F.H. Holtzberg, P.H. Kes, Phys. Rev. B 38, 7203 (1988)

    Article  ADS  Google Scholar 

  16. F. Gomory, S. Takacs, T. Holubar, G. Hilscher, Physica C 235–240, 2753 (1994)

    Article  Google Scholar 

  17. T. Ishida et al., Advances in Superconductivity V, 541 (1993)

  18. J.R Clem, Ames Report IS-M 280, “Ac Losses in Type-II Superconductors” (1979)

  19. F. Gömöry, S. Takács, T. Holubar, G. Hilscher, in Advances in Cryogenic Engineering, Vol. 42, ed. by L.T. Summers (Plenum Press, New York, 1997), p. 587

Download references

Acknowledgments

This work at The National High Magnetic Field Laboratory was supported by NSF DMR-1006584 and DMR-1306785, the State of Florida, the U.S. Department of Energy, and by NHMFL which is supported by the National Science Foundation under DMR-1157490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nikolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolo, M., Shi, X., Choi, E.S. et al. Flux Dynamics, ac Losses, and Activation Energies in (Ba\(_{0.6}\)K\(_{0.4})\)Fe\(_{2}\)As\(_{2}\) Bulk Superconductor. J Low Temp Phys 178, 188–199 (2015). https://doi.org/10.1007/s10909-014-1237-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1237-y

Keywords

Navigation